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1 Abstract

In this paper I describe a natural presentation of the symplectic mapping class group
SMap(X,ω) := π0(Symp(X,ω)) of rational 4-manifolds X in the case when the symplectic
form ω has type D. Explicitly, I describe the conditions on the cohomology class [ω] which
characterize the type D and show that in this case there exists a set of generators of the group
SMap(X,ω) which are symplectic Dehn twists along ω-Lagrangian spheres Si with the incidence
graph Dl. In particular, this implies that the group SMap(X,ω) is the quotient of the braid
group Br(Dl) of type D. Finally, I find the set of additional relations, which gives the desired
presentation of the group SMap(X,ω).
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2 Introduction

This paper is devoted to description of the symplectic mapping class groups π0(Symp(X,ω))
(SyMCG) of rational 4-manifolds (multiple blow-ups of CP2). This work is a continuation of my
diploma thesis [4]. Recall that a 4-manifold is called rational if it is diffeomorphic to S2×S2 or
to a (multiple) blow-up of CP2. Since in the case X = S2×S2 the SyMCG is well-understood,
we ignore this case and denote by Xl the l-fold blow-up of CP2.

It appears that, unlike the case of mapping class groups of surfaces, the SyMCG depends
substantially on the symplectic form ω. On the other hand, it is known that the symplectic
mapping class group of a rational 4-manifold X depends only on the cohomology class [ω] of
the form.

Also, it is known (see [26]) that if the number of blow-up is l < 5, then a symplectomorphism
homotopic to identity is symplectically isotopic to identity, and the SyMCG is finite. Therefore,
it is interesting to find the cases when this group is rather big, and give a description of the
SyMCG (for example, in a form of a nice presentation) in those cases.

In my diploma thesis [4] I described the dependence of SyMCG on the cohomology class
[ω]. In particular, I have shown that for generic symplectic form ω the SyMCG is trivial, and
found two important cases, denoted by El (l = 5, . . . , 8) and Dl−1 (l = 5, . . . , 9), in which one
can expected a big SyMCG. In particular, I have shown that the image of the symplectic MCG
in the smooth MCG is a reflection group ( = Weyl group) of type El or resp. Dl−1, and that
the SyMCG π0(Symp(X,ω)) admits a surjective homomorphism from the braid group of the
same type El or resp. Dl−1.

The goal of this paper is to give a complete description of the SyMCG in the case D.
The first result is the complete description of the type D. It appears that in the case of

large number of blow-ups (l ≥ 10) the SyMCG is generated not only by “usual” symplectic
Dehn twists along Lagrangian spheres S ⊂ (X,ω), but also so called “elliptic twists”, see [48]
for details. The construction of such an elliptic twist involves certain embedded (−1)-tori C
such that ξ · [C] ≤ 0 and c1(X) · [C] = −1. In Subsection 3.1 I describe the condition when
no such tori exist.

Next, I reduce the calculation of the SyMCG to the calculation of the fundamental group of
certain special divisor in moduli space blow-ups of CP2, thus it makes possible to find a natural
geometric presentation of the group π0(Symp(X,ω)). In our cases symplectic mapping class
group is a quotient of the braid group Br(Dl) and generators are symplectic Dehn twists along
Lagrangian spheres.

For the case Dl I also describe relations on generators. Hence, we find a desirable presenta-
tion.
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3 Preliminary results

Let us first recall the definitions which we shall use in this paper. To describe these problems
in more details, let us introduce some notation. Let X be a compact manifold. Then

• Z2(X) denotes the space of closed 2-forms on X;

• Ω(X) to denotes the space of symplectic forms ω on X;

• Ω(X, ξ) denotes the space of symplectic forms ω on X in a cohomology class ξ ∈ H2(X,R);

• Diff(X) denotes the group of diffeomorphisms of X,

• Diff0(X) denotes the connected component of the identity of diffeomorphism group Diff(X);
thus Diff0(X) is the isotopy group of X;,

• Γ(X) := Diff(X)
/

Diff0(X) = π0(Diff(X)) denotes diffeotopy group, another name of Γ(X)
is mapping class group of a smooth compact manifold X,

• Diff(X, ξ) denotes the subgroup of diffeomorphism group Diff(X) which consists all diffeo-
morphisms preserving a given cohomology class ξ ∈ H2(X,R), thus Diff(X, ξ) is the stabilizer
of ξ ∈ H2(X,R) in Diff(X);

• Symp(X,ω) denotes the symplectomorphism group of a symplectic manifold with fixed sym-
plectic form (X,ω), thus Symp(X,ω) is the stabiliser of an element ω w.r.t. the action of Diff(X)
on the space Ω(X);

• Symp0(X,ω) denotes the connected component of the identity of symplectomorphism group
Symp(X), which is called the symplectic isotopy group of X;

• SMap(X,ω) := Symp(X,ω)
/

Symp0(X,ω) = π0(Symp(X,ω)) denotes the symplectic map-
ping class group of a compact symplectic manifold (X,ω), also it is called symplectotopy
group,

Now let us define some terms concerning almost complex structures and pseudoholomorphic
curves.

Definition 3.1. • An endomorphism J : TX → TX of the tangent bundle such that J2 =
−IdTX is called an almost complex structure on a manifold X.

• If ω(v, Jv) > 0 for every non zero tangent vector v we will say that symplectic form ω on X
tames an almost complex structure J .

• If for an almost complex structure J on X the following is true: in a neighborhood of every
point x ∈ X there exists a local complex coordinate system (z1, . . . , zn) such that J ∂

∂zj
= i ∂

∂zj
;

then we will say that J is an integrable.

• An integrable almost complex structure is called a complex structure.

Definition 3.2. S is a closed surface and J an almost complex structure on X, then

• a C1-smooth map u : S → X is called J-holomorphic (or, if J is not specified, pseu-
doholomorphic) if the following true: there exists a complex structure JS on S such that
du : TS → TX is (JS, J)-linear, i.e.,

du ◦ JS = J ◦ du : TzS → Tu(z)X for every z ∈ S;

• pseudoholomorphic or J-holomorphic curve is an image u(S) of a non-constant pseudo-
holomorphic map.

Also explain the following notation that we use in our work. For this aim fix some suffi-
ciently large k ∈ N and some α with 0 < α < 1.
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• J (X) denotes the space of all almost Ck,α-smooth complex structures tamed by some sym-
plectic form (let us notice that there is no fixed symplectic form, every complex structure can
be tamed by its own symplectic form)

• J (X, ξ) denotes the space of that J ∈ J (X) which are tamed by symplectic form ω from
Ω(X, ξ)

• ΩJ (X) denotes the space of pairs (ω, J): ω is a symplectic form that tames J an almost
complex structure J ;

• ΩJ (X, ξ) denotes the set of those pairs (ω, J) ∈ ΩJ (X) for which ω ∈ Ω(X, ξ);

• J int(X) ⊂ J (X) denotes the subspace of integrable almost complex structures;

• J int(X, ξ) ⊂ J (X, ξ) denotes the subspace of that almost complex structures J which are
tamed by some ω from Ω(X, ξ);

• the diffeomorphism group Diff(X) naturally acts on all spaces above;

Let us recall that the cohomology space H2(X,R) has the Lorentzian signature type. Our
standard basis of the cohomology space H2(X,R) is L,E1, . . . , El, such that L is the homology
class of line in CP2 with L2 = 1 and Ei is homology class of the i-th exceptional curve with
E2
i = −1. Consider the cohomology classes ξ ∈ H2(X,R) such that ξ2 > 0, these classes forms

the double cone, fix one cone half and call it a positive cone K+. Then Diff+ is the group of
deffeomorphisms preserving the orientation of X and preserving positive cone. Notice that in
case of rational 4-dimensional manifolds there only two cases for that it is possible to change
orientation: S2 × S2 (quadric) and CP2 blown up at one point.

Now denote by Γ+(X) ⊂ Γ(X) the mapping class group of X preserving orientation and
positive cone K+(X). Consider the natural homomorphism ρ : Γ+(X)→ Aut(H2(X,Z)), that
is induced by action of the group of diffeomorphism that preserves Diff+ on cohomology group
H2(X,Z), and the following exact sequence

1→ Γ (X)→ Γ+(X)→ ΓW (X)→ 1,

where Γ (X) is the kernel of the map ρ : Γ+(X)→ Aut(H2(X,Z)) and ΓW is the image of the
map ρ : Γ+(X)→ Aut(H2(X,Z))

Let us formulate the following theorem about the sequence above.

Theorem 3.1. [47] The exact sequence

1→ Γ (X)→ Γ+(X)→ ΓW (X)→ 1,

splits and Γ+(X) is isomorphic to semi-direct product Γ (X) o ΓW (X)

Let we have rational 4-dimensional manifold (X,ω′) with symplectic form ω′ on it, ω′ lies
in cohomology class ξ′ ∈ H2(X,R). Recall that there exists a diffeomorphism F , such that F
maps (X,ω′) into (X,ω) and ω lies in cohomology class ξ ∈ H2(X,R) and for this cohomology
class the following inequalities are true:

ξ · S ′123 > 0, ξ · Si,i+1 > 0, i = 1, . . . , l − 1, ξ · El > 0, (3.1)

where S ′123 = L− (E1 +E2 +E3) for i = 0, Si,i+1 = Ei−Ei+1 for i = 1, . . . , l− 1 and El in case
of sl.

Remark 3.1. This diffeomorphism F corresponds to the changing of blowing down order.
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Moreover, the image of the mapping class group preserving positive cone Γ+(X) into the
group of automorphisms of 2-cohomology space Aut(H2(X,Z)) is the Coxeter-Weyl group
W(S(X)) and the Coxeter system S(X) has the type S(X)) = BEl+1 and the following Coxeter
graph

s0

s1 s2 s3 . . . sl−2 sl−1 sl

Definition 3.3. Let ω be a symplectic form, then symplectic cone Kω is the subset of all
cohomology classes ξ ∈ H2(X,R), which are represented by any ω.

Corollary 3.2. Consider a symplectic form ω and a Weyl chamber C ⊂ Kω of the group
ΓW (X). Then there exists a diffeomorphism F such that F∗[ω] lies in the closure C̄.

Corollary 3.3. Consider a rational 4-dimensional manifold (X,ω). Then its group of sym-
plectomorphisms Symp(X,ω) depends only on cohomology class [ω].

For every a rational symplectic 4-manifold with the symplectic form ω in the cohomology
class ξ there is the following principal bundle:

1→ Symp(X,ω)→ Diff(X, ξ)→ Ω(X, ξ)→ 1

Because for an action of the group Diff(X, ξ) the space Ω(X, ξ) is an orbit and the group of
symplectomorphisms Symp(X,ω) is the stabilizer of the form ω. Also, we have the associated
(with short sequence above) long exact sequence:

. . . // π1(Symp(X,ω)) // π1(Diff(X, ξ)) // π1(Ω(X, ξ)) ∂ //

∂ // π0(Symp(X,ω)) // π0(Diff(X, ξ)) // π0(Ω(X, ξ)).

(3.2)

Using the long exact sequence (3.2) it is easy to prove [4] the next lemma:

Lemma 3.4. The image of the symplectic mapping class group π0(Symp(X,ω)) in the mapping
class group π0(Diff(X, ξ)) is ΓW (X, ξ), where ΓW (X, ξ) denotes the stabilizer of the element ξ
in the group ΓW (X).

Now let us formulate the theorem describing the group ΓW (X, ξ).

Theorem 3.5. [4] (i) The group ΓW (X, ξ) is a finite reflection group W(S(X, ξ)) corresponding
to the following Coxeter system S(X, ξ): si ∈ S(X, ξ) iff si ∈ S(X) and si preserve ξ.

Remark 3.2. As we know that ΓW (X, ξ) = W(S(X, ξ)) is a finite reflection group, then
S(X, ξ)) is

(ii) The Coxeter system S(X, ξ) is a subset of Coxeter system S(X) and consists exactly of
those cohomology classes, which are orthogonal to the cohomology class ξ.

Lemma 3.6. The set of roots of the Coxeter system S(X, ξ) coincides with the set of spherical
(−2)-classes S ∈ E(−2) orthogonal to ξ, these spherical (−2)-classes S ∈ E(−2) realized as (−2)-
Lagrangian spheres in X
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Definition 3.4. Consider the quotient space J int(X, ξ)/Diff(X, ξ). This space is the moduli
space of polarised rational surfaces. We denote it as M(X, ξ).

Let us notice that for different points J ∈ J int(X, ξ) their stabilizer can be different.
Namely, the stabilizer group is the automorphism group Aut(X, J) and there are obvious ex-
amples when this group is non-trivial. On the other hand, for l ≥ 4 and for generic J the
automorphism group is trivial. This means that that the quotient J int(X, ξ)/Diff(X, ξ) is not
a principle bundle, and the long exact sequence of homotopy group could fail to exist.

Now consider the kernel Diff of the homomorphism Diff+ → ΓW (X).

Definition 3.5. The moduli space of polarised marked rational complex surfaces
M̃(X, ξ) is a quotient space J int(X, ξ)/Diff (X, ξ).

Theorem 3.7. In the diagram

π1(Diff(X, ξ))
φ1 // π1(Ω(X, ξ))

∂

φ2 // π0(Symp(X,ω))
φ3 // π0(Diff(X, ξ))

φ4 // π0(Ω(X, ξ))

π1(Diff(X, ξ))
φ5 //

=
OO

π1(J (X, ξ))

∼=φ6

OO

π1(Diff(X, ξ))
φ7 //

=
OO

π1(J int(X, ξ))
φ9 //

φ8
OO

π1(M(X, ξ))

φ

OO

∂

φ10 // π0(Diff(X, ξ))

=

OO

(3.3)
the homomorphism φ is an isomorphism.

Lemma 3.8. If A ∈ H2(X,Z) and A2 < 0 then there exists at most one J-holomorphic curve
C, which realizes the class A.

Theorem 3.9. [4] Let ξ can be realized as cohomology class of some symplectic form and ξ
satisfies the period conditions 3.1. Then the group π0

(
Symp(X, ξ)

)
is trivial.

Lemma 3.10. For every structure J ∈ J (X)\J (X, ξ) there exists an irreducible J-holomorphic
curve C such that [C]2 < 0 and

∫
C
ξ ≤ 0.

By this lemma in the case A2 < 0 the moduli spaceM(X,A) of pseudoholomorphic curves
of the homology class A is identified with the space of all those structures J ∈ J (X) such that
there exists an irreducible J-holomorphic curve C with the class [C] = A.

Theorem 3.11. Assume that A2 < 0.

(i) The space M(X,A) is a Banach submanifold of J (X), and its real codimension equals
to −(c1(X) · A+ A2) ∈ Z+.

(ii) The expected (“arithmetic”) genus of a curve C in the class A is gar(A) = A2−c1(X)·A
2

+ 1.

(iii) The space M(X,A) has real codimension 2 in J (X) the following cases:

(1) curve C in the class A is a rational (−2)-curve and
∫
C
ξ ≤ 0;

(2) C is an elliptic (−1) curve and
∫
C
ξ ≤ 0.

Lemma 3.12. Let X be diffeomorphic to CP2 blown up in l ≤ 9 points, and J a tamed almost
complex structure on X. Then there exists no J-holomorphic curve C on X with C2 = −1 and
c1(X) · C = −1.
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3.1 Homological conditions on [ω] for absence of toric twists

We are interested in studying π1(J (X, ξ)). By the Theorem 3.10 the space J (X, ξ) ⊂
J (X) is the complement to the set of the structures J for that there is an irreducible J-
holomorphic curve C such that [C]2 < 0 and

∫
C
ξ ≤ 0. Also, we know that J (X) is simply

connected. It follows the group π1(J (X, ξ)) is generated by paths around the component
of J (X)\J (X, ξ), which have codimension 2. Now by Theorem 3.11 those components
correspond to either (−2)-spheres or to (−1)-tori.

The paper [48] describes a possible contribution to the SyMCG by (−1)-tori. It was shown
the following:

• Assume that C is an ω-symplectic (−1) torus in X. Then there exists a deformation ω′

of the symplectic structure such that
∫
C
ω′ is non-positive.

• Set ξ := [ω] and ξ′ := [ω′]. Then the complement J (X, ξ)\J (X, ξ′) contains the space
J (X; [C]) of those structures J ∈ J (X) for which there exists a non-singular irreducible
J-holomorphic curve in the class [C]. (The complement J (X, ξ)\J (X, ξ′) could contain
other strata.)

• We denote by J (X, ξ, [C]) the intersection J (X, ξ) ∩ J (X, [C]). Then J (X, ξ, [C]) is
a non-empty Banach submanifold in J (X, ξ) of real codimension 2. In particular, we
obtain an element in π1J (X, ξ′) which is represented by a small loop in J (X, ξ) around
J (X, [C]).

• This element defines a non-trivial element in the symplectic mapping class group
π0Symp(X,ω′).

Moreover, ifXl is CP2 blown up at l ≤ 10 points, then there are no elements in π0Symp(Xl, ω)
which arise from (−1)-tori.

At this point we give a formal definition of the cases for which we can compute (or at least
understand) the symplectic mapping class group.

Definition 3.6. Let X be a rational 4-manifold, L;E1, . . . , El the standard basis of X, ω a
symplectic form on X, and ξ := [ω] its cohomology class. Assume additionally that ξ = [ω]
satisfies the inequalities (3.1), possibly non-strict.

• We say that the symplectic form ω and cohomology class ξ have type Dl, when in the
period conditions one has the following strict (in)equalities:

ξ · S ′123 = 0, ξ · S12 > 0, ξ · Si,i+1 = 0, i = 2, . . . , l − 1; (3.4)

and there are no ω-symplectic (−1)-tori.

• We say that the symplectic form ω and cohomology class ξ has type El, when in period
conditions one has only equalities:

ξ · S ′123 = 0, ξ · Si,i+1 = 0, i = 1 . . . , l − 1 (3.5)

Remark 3.3. Notice that the condition ξ ·El > 0 is always satisfied since El is a (−1)-sphere,
whereas all other classes S... are (−2)-spheres.
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Theorem 3.13. Let X be CP2 blown up in l points, and C a symplectically embedded torus
such that C2 = −1 and c1(X) · C = −1. Then l ≥ 10 and there exists a geometric basis
L;E1, . . . , El in which the holomogy class of C is

[C] = 3mL−
∑9

i=1mEi − E10. (3.6)

Remark 3.4. A surface C is symplectically embedded in X if there exists a symplectic form
ω on X such that C is ω-symplectic. In this case we take the orientation on C defined by ω.
We also assume that the geometric basis L;E1, . . . , El is represented by ω-symplectic spheres.

Proof. Fix a geometric basis L,E1, . . . , El. Then we can write [C] = aL −
∑

i biEi with coef-
ficients a := C · L and bi := C · Ei. Find an ω-tamed almost complex structure J such that
C is J-holomorphic. Notice that we can perturb J outside C and make it generic enough.
Consequently, every class L, Ei can be realized by a J-holomorphic rational curve, still denoted
by L or Ei. In this situation Gromov’s theory ensures that a and every bi are non-negative
integers.

The property above holds for coefficients a, bi of the class [C] in any geometric basis. The
idea of the proof is to find such a geometric basis L′, E ′1, . . . , E

′
l in which the coefficient a′ is

minimal possible. Let us describe the procedure we make use of. First, we notice that we can
arbitrarily permute classes E1, . . . , El. So we shall always assume that the coefficients bi form
a decreasing sequence: b1 ≥ b2 ≥ · · · .

Next, consider the reflection s0 across the wall orthogonal to the class S ′123 = L−E1−E2−E3.
Set δ = −C · S ′123 = b1 + b2 + b3 − a. Recall that s0 is realized by a diffeomorphism and sends
every geometric basis into another geometric basis. The change of the coefficients of [C] under
s0 is as follows: a 7→ a′ = a − δ, bi 7→ b′i = bi − δ for i = 1, 2, 3, the coefficients bi with
i ≥ 4 remain unchanged. So if δ > 0 we can decrease the coefficient a. Since a is integer and
non-negative, after repeating this procedure we come to the case when further decreasing of a
is impossible. This situation is characterized by the following conditions:

a ≥ b1 + b2 + b3 and b1 ≥ b2 ≥ ... ≥ bl. (3.7)

Clearly, those are the (non-strict) period conditions (3.1).
In the argumentation below we can suppress the vanishing coefficients bi. Thus we may

assume that bl ≥ 1. Alternatively, we can think that l is the index of the last non-vanishing bi.
Denote by b∗ the average value of the first three bi: b

∗ := (b1 + b2 + b3)/3. Then b∗ ≤ a/3,
b∗ ≥ bi for i ≥ 3 and ∑

i bi ≤ l · b∗.
Since

∑
i bi = 3a + 1, we get 3a + 1 ≤ la

3
, or l ≥ 9 + 3

a
. So we conclude that l ≥ 10. Further,

3a+ 1 ≥
∑

i bi ≥ l ≥ 10, and hence a ≥ 3.

Let us recall the whole set of relations on the coefficients a; bi. Those are positive integers
satisfying period conditions (3.7), two more linear conditions∑

i bi = 3a+ 1 and bl ≥ 0.

and the quadratic condition ∑
i b

2
i = a2 + 1.

Now, we shall perform some manipulations with coefficients bi preserving the value of a and
the linear conditions, trying to maximize the value of

∑
i b

2
i . To make our procedure uniform,
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we denote by b = (b1, b2, . . .) any non-increasing sequences of integers such that bi = 0 starting
from some sufficiently large index i. In what follows those sequences b can be finite or infinite,
this will play no role. In particular, for such sequences the values b2 :=

∑
i b

2
i and tr(b) :=

∑
i bi

are well-defined.
Further, we assume that the linear conditions above are satisfied. In particular, tr(b) =∑
i bi = 3a + 1, b1 ≥ b2 ≥ · · · ≥ bi ≥ 0 and b1 + b2 + b3 ≤ a. For a given value of an integer

a we want to find the maximal value of b2 on the set of such sequences satisfying those linear
conditions. Notice that if this value is less or equal than a2 then we obtain a contradiction with
hypotheses of the theorem. This will give us the proof.

A trivial observation is that for t > 0 and bi ≥ bj the expression (bi + t)2 + (bj− t)2 is bigger
than b2

i + b2
j . This allows us to increase the value of b2 preserving tr(b).

First, assume that b1 + b2 + b3 < a. As before, l is the index of the last non-vanishing
bi. Then we can increase b1 by some k and decrease bl by the same k such that we get either
b1 + b2 + b3 = a or bl = 0. In the latter case the index of the last non-vanishing bi becomes l−1.
We do this operation until we get b1 + b2 + b3 = a. Next, in the case b2 > b3 we increase b1 by
b2− b3 and decrease b2 by the same b2− b3. In the obtained sequence b we have b1 + b2 + b3 = a
and b2 = b3.

In the next step of the procedure we find the index k ≥ 4 such that b3 = b4 = · · · = bk−1 > bk.
If k = l (the last non-vanishing bi) or k = l + 1 (this means that bl = b3 and bl+1 = 0) we do
nothing. Otherwise, i.e. in the case k < l, we increase bk and decrease bl until we get either
bk = b3 or bl = 0. Then we try to repeat this procedure with new values of k or l.

If none of the above procedure is possible, we obtain the following sequence b: It has
b1 = a− 2b, b2 = · · · = bl−1 = b, and b ≥ bl > 0. We denote bl by c and write c = αb . Then we
get 0 < α ≤ 1 and

3a+ 1 = (a− 2b) + (l − 2)b+ αb

which yields l + α = 4 + 2a+1
b

. Now we can write

b2 − a2 = (a− 2b)2 + (l − 2) b2 + α2b2 − a2

= 4b2 − 4ab+ (l − 2 + α) b2 + (α2 − α)b2

=

(
6 +

2a+ 1

b

)
b2 − 4ab+ (α2 − α)b2

= 6b2 − 2ab+ b+ (α2 − α)b2

The latter is a quadratic polynomial in b with positive leading coefficient. It follows that its
maximum value in any interval [b0, b1] is taken at the end points. In our case this interval is[
1,
[
a
3

]]
, where

[
a
3

]
denotes the integer part of a

3
. Let us notice that since 0 < α ≤ 1 we get

0 ≤ (α− α2) ≤ 1
4
. At b = b0 = 1 we get

b2 − a2 = 6− 2a+ 1− (α− α2) b2

Since a ≥ 3, the latter expression is always ≤ 1 and the equality holds only in the case when
a = 3 and all bi are 1. This is the case when we have

[C] = 3L−
∑10

i=1Ei

Next, let us consider the value of the quadratic function at b =
[
a
3

]
for different values of a

modulo 3. For a = 3m+ q with q = 1 or q = 2 we get b = m and

6b2 − 2ab+ b− (α− α2)b2 = 6m2 − 6m2 − 2qm+m− (α− α2)m2

= −m (2q − 1)− (α− α2)m2
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which is strictly negative. It follows that under assumption of the theorem we must have a = 3m
with an integer m. Moreover, the maximising sequence b must be of the form b1 = · · · = b9 = m
and b10 = 1.

Notice that from the proof of the theorem we obtain the following properties of the homology
class [C] of a symplectic (−1)-torus in a rational 4-manifold X:

Corollary 3.14. Let (X,ω) be a rational symplectic 4-manifold and C a symplectically embed-
ded (−1)-torus in X.

1. The integer m is defined uniquely.

2. In the case m = 1 the subgroup in H2(X,Z) generated by L;E1, . . . , E10 is well-defined
and independent of the choice of a basis used in the representation3.6. The classes
L;E1, . . . , E10 are defined up to the action of the reflection group generated by the re-
flections given by the classes S ′123;S1,2, . . . , S9,10.

3. In the case m > 1 the class E10 and subgroup in H2(X,Z) generated by L;E1, . . . , E9 are
well-defined and independent of the choice of a basis used in the representation3.6. The
classes L;E1, . . . , E9 are defined up to the action of the reflection group generated by the
reflections given by the classes S ′123;S1,2, . . . , S8,9.

4. One can find exceptional symplectic spheres E1, . . . , E10 in X which satisfy the properties
of the Theorem 3.13 and which intersect C transversally and positively.

5. Making a contraction of the exceptional sphere E10 we obtain a new rational symplectic
4-manifold (X ′, ω′). The torus C descends to X ′ as a symplectic torus of C ′ of self-
intersection [C ′]2 = 0.

Vice versa, let C ′ be a a symplectic torus of C ′ of self-intersection [C ′]2 = 0 on a symplectic
4-manifold (X ′, ω′). Then making a symplectic blow-up of X ′ in a point p lying on C ′

we obtain a new symplectic 4-manifold (X,ω) and a symplectic torus of C on it with
self-intersection [C]2 = −1.

Proposition 3.15. Let l ≥ 10 and let X be a CP2 blown-up in l points. Let L;E1, . . . , El
be the geometric basis and let ξ = λ[L] −

∑
i µi[Ei] be the 2-cohomology class. Assume that

µ2 = · · · = µl = µ, and µ1 = λ− 2µ. Assume additionally, that

• 0 < µ < 2λ
7

if l = 10;

• 0 < µ < 4λ
l+3

if l ≥ 11.

Then
λ = µ1 + µ2 + µ3, µ1 > µ2 = µ3 = · · · = µl > 0,

the class ξ is represented by a symplectic form, and for every symplectic torus C in X with
C2 = −1 we have

∫
C
ξ > 0.

Proof. It is based on the proof of Theorem 3.13. The key observation is as follows. Recall
that we write the homology class [C] of the (−1)-torus in the form [C] = aL−

∑
i biEi. Then

we made the following transformations of the coefficients a, b1, . . . , bl. If bi < bi+1 then we
exchanged them setting b′i := bi+1 and b′i+1 := bi. Next, if a < b1 + b2 + b3, then we replaced
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a, b1, b2, b3 by a′ := a− d, b′1 := b1− d, b′2 := b2− d, b′3 := b3− d where d := b1 + b2 + b3− a. Let
us denote the new class obtained by the first or second construction by [C ′].

Now make the following observations: Both transformations of the coefficients can be made
using a diffeomorphism f , i.e., [C ′] = f∗([C]). Moreover, this isomorphism is the Dehn twist
along the sphere Si,i+1 in the first case, and S ′123 in the second case. It follows that c1(X) · [C ′] =
c1(X) · [C] = −1 and [C ′]2 = [C]2 = −1.

The other observation is that ξ·[C ′] ≤ ξ·[C] ≤ 0. Consequently, repeating the argumentation
from the proof of Theorem 3.13 we conclude that under the hypotheses of Proposition 3.15
there exists an integer m ≥ 1 such that for the class

[C] = 3mL−
∑9

i=1mEi − E10

we have ξ · [C] ≤ 0. However, for ξ as in the hypotheses of the proposition we get ξ · [C] > 0.
This contradiction proves the proposition.
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4 Hilbert schemes of points on CP2 and special configu-

rations of points.

Consider some Xl, which is the blowing up of CP2 at l points. Then we can define the
sequence of contraction

Xl
ql−→ Xl−1

ql−1−−−→ Xl−2 → · · ·
q1−−→ X0

∼= CP2 (4.1)

such that every map Xi
qi−→ Xi−1 is a contraction of a unique exceptional curve in the homology

class Ei. Sequences as (4.1) we will call blow-up sequences.
We fix the integer l and now let us define a moduli space Xl of all blowings-ups of CP2

at l points as a set of all possible blow-up sequences (4.1) with fixed isomorphism X0
∼= CP2.

Forgetting the last contraction Xl
ql−→ Xl−1 we obtain the natural map between two moduli

spaces Xl
pl−→ Xl−1.

For an explicit construction of the moduli space Xl see [4]. Now let us list some properties
of the spaces Xl.

Lemma 4.1. (i) Consider the projection pl+1 : Xl+1 → Xl. This projection is a bundle with fiber
p−1
l+1(x), which is rational 4-dimensional manifold isomorphic to Xl(x), where x = (x1, . . . , xl)

is the sequence of blow up centers and Xl(x) is the blow up of CP2 in centers x = (x1, . . . , xl).
(ii) The group PGl(2,C) acts on CP2 and there is a extension of this action to the action

of PGl(2,C) on Xl such that every projection pl+1 : Xl+1 → Xl is equivariant.
(iii) There is a natural isomorphism between the quotient space PGl(2,C)

/
Xl and the

quotient space J int(X)
/

Diff (X).

Remark 4.1. Notice that in general the action of PGl(2,C) on Xl is not proper and the
quotient space PGl(2,C)

∖
Xl is not Hausdorff.

Now let us explain how to interpret in terms of moduli spaces Xl and configurations x that
the symplectic form ω and cohomology class ξ have type Dl−1 or El.

Consider the case when ξ ∈ H2(X,R) satisfy the non-strict period conditions. R(X, ξ) is
a system of positive root of Coxeter system S(X, ξ) (system that defines the reflection group
ΓW (X, ξ)). If S ∈ R(X, ξ) then we know that S is an integer homology class, which is repre-
sented by a (−2)-sphere.

Definition 4.1. Xl(ξ) denotes the subset of that configuration of blow-up centers x ∈ Xl for
which there is no class S ∈ R(X, ξ) represented by some curve C ∈ Xl(x); Dl(ξ) is the following
complement Xl\Xl(ξ).

Now we want to describe Xl(ξ) in the cases, when ξ has a type Dl−1 or El, more precisely,
for the following simple root systems

(E) S(X, ξ) = El = {S ′123, S1,2, S2,3, . . . , Sl−1,l} and

(D) S(X, ξ) = Dl−1 = {S ′123, S2,3, S3,4, . . . , Sl−1,l}.

Remark 4.2. Notice that we consider the case, when system El has rank l ≤ 8. Also, two
systems E5 and D5 are isomorphic as abstract Coxeter systems, however, their realizations in
H2(X,Z) are different. Consequently corresponding spaces are also not isomorphic, because
they have even different dimensions.
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Now describe the set of positive roots for the system R(El):

(S0) Si,j = Ei − Ej with 1 ≤ i < j ≤ l;

(S1) S ′ijk = L− (Ei + Ej + Ek) with 1 ≤ i < j < k ≤ l;

(S2) S ′′i1,...,i6 = 2L−
∑

j Eij with 1 ≤ i1 < i2 < . . . < i6 ≤ l; here we must have l = 6, 7, 8;

(S3) S ′′′i = 3L− Ei −
∑8

i=1Ei, here we must have l = 8 and 1 ≤ i ≤ 8;

And positive roots for the system R(Dl−1) are the following:

(S’0) Si,j = Ei − Ej with 2 ≤ i < j ≤ l;

(S’1) S ′1ij = L− (E1 + Ei + Ej) with 2 ≤ i < j ≤ l.

Lemma 4.2. The locus Dl(ξ) is a divisor whose irreducible components are indexed by the
system of positive roots R+(X, ξ) of the system S(X, ξ).

Recall that we have 4 ≤ l ≤ 9 and S(X, ξ) is either El or Dl−1.

Lemma 4.3. (i) The group Aut(CP2) = PGL(3,C) acts on Xl and for each ξ the space Xl(ξ)
is PGL(3,C)-invariant.

(ii) There exists a natural map from the quotient Xl/PGL(3,C) to the quotient
J int(X)/Diff (X). There exists a closed algebraic set Al ⊂ Xl of complex codimension ≥ 2
such that pre-image of the set J (X, ξ) in Xl contains Xl(ξ)\Al.

Corollary 4.4. There exist a map from π1

(
Xl(ξ)/PGL(3,C)

)
to π0(Symp(X, ξ)).

By Lemmas 3.11 and 3.12 the divisorial part of D∗l (ξ) is Dl(ξ).

Corollary 4.5. There exist a map from π1

(
Xl(ξ)/PGL(3,C)

)
to π0(Symp(X, ξ)).

Proposition 4.6. The fundamental group π1

(
X ◦l (ξ, x∗1)

)
is the pure braid group PBrl−1(S2) of

the sphere on l − 1 strands.

4.1 Presentation of the the fundamental group of the variety Xl(ξ)
in the case D.

In the diagram

1→ π1(M(X, ξ))→ π1(M̂(X, ξ))→ ΓW (X, ξ)→ 1. (4.2)

we have computed the first and the last terms for the case S(X, ξ) = Dl−1. Moreover, we have
found presentations for those groups.

Recall that ΓW (X, ξ) is a reflection group of type Dl−1 and the natural system of generators
are reflections indexed by elements the system S(X, ξ). Moreover, those reflections can be
represented by symplectomorphisms in Symp(X,ω). Namely, if S is a homology class from
S(X, ξ), then this class is represented by an ω-Lagrangian sphere Σ ⊂ X, and the symplectic
Dehn twist along Σ, denoted by TΣ, is the desired symplectomorphism.
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Let us notice that such the square T 2
Σ of such a twist is smoothly isotopic to identity, i.e.

T 2
Σ = 1 in the group ΓW (X, ξ). In this way we obtain certain elements in the group π1(M(X, ξ)).

We are going to show that those elements generate the whole group π1(M(X, ξ)), and find a
natural systems of relations between those generators.

Claim 4.7. Let Σ ⊂ X be an ω-Lagrangian sphere with the homology class S and TΣ the
corresponding symplectic Dehn twist. Then the symplectic isotopy class [T 2

Σ] in the group
π0(Symp(X,ω)) is the image of the loop around certain component D(S) of the divisor Dl(ξ).
Moreover, the class S lies in the root system R+(ξ), and the component D(S) is the locus of
constellations of points x1, . . . , xl as in Lemma 4.2.



16

5 Generators and relations in the case of type D.

5.1 Some preliminaries.

Let us recall main results about the group π̂1

(
M̂l(D)

)
.

• The constellation we consider has rank l − 1. The corresponding homology classes
S′123; S12, . . . ,Sl−1,l in X compose a constellation of the type Dl−1. Moreover, those classes
can be represented by Lagrangian spheres S ′123;S12, . . . , Sl−1,l .

• The whole group is generated by the elements s′123; s23, . . . sl−1,l which are symplectic
Dehn twists along the Lagrangian spheres S ′123;S12, . . . , Sl−1,l . Moreover, those generators
satisfy the braid relations corresponding to the diagram Dl−1. Consequently, the group

π̂1

(
M̂l(D)

)
is a quotient of the braid group Br(Dl−1).

• The group Br(Dl−1) acts on the homology groupH2(X,Z) as the reflection group W(Dl−1).
The kernel of this action is the pure braid group PBr(Dl−1).

• The pure braid group PBr(Dl−1) is generated by the squares of Dehn twists (s′1ij)
2 and

s2
ij along the Lagrangian spheres in the classes S ′1ij and Sij where 2 ≤ i < j ≤ l. The

homology classes S ′1ij and Sij compose the system of positive roots of type Dl−1. On the

other hand, those squares of Dehn twists (s′1ij)
2 and s2

ij are represented in π1

(
M̂l(D)

)
by

paths around the divisors D′123;D23, . . . ,Dl−1,l.

• There exists a (natural) epimorphism of the groups Br(Dl−1) → Br(Al−2) defined by
adding the relation s′123 = s23 to the set of standard defining relations of Br(Dl−1). We
denote this epimorphism by ρ. It induces two other epimorphisms ρ : W(Dl−1)→ W(Al−2)
and ρ : PBr(Dl−1) → PBr(Al−2). Recall that W(Al−2) = Syml−1 and PBr(Al−2) = Brl−1

are the standard symmetric and braid groups. The group Syml−1 is naturally realized as
the permutation group of the classes E2, . . . ,El from the geometric(?) basis of X.

• The homomorphism from PBr(Dl−1) to π1

(
M̂l(D)

)
factorizes through the epimorphism

ρ : PBr(Dl−1)→ PBr(Al−2).

• We have natural homomorphisms from the usual braid groups (full and pure) to the
corresponding braid groups of the sphere:

σ : Brl−1 → Brl−1(S2) and σ : PBrl−1 → PBrl−1(S2).

• The center of the braid group Brl−1 is a free abelian group Z generated by the square of
the Garside element ∆2

l−1. It lies in the pure braid group PBrl−1. We use the same
notation for its image in the braid group of the sphere.

Let us explain now the goal of this section. We want to do the following

1. Show that in the case D the symplectic mapping class group SMap(Xl,D) is isomorphic

to the group π̂1

(
M̂l(D)

)
.

2. Show that latter group is isomorphic to the image of the braid group Br(Dl−1) in the
product

W(Dl−1)× Brl−1(S2)/Z〈∆2
l−1〉.
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3. Find the arising ”geometric presentation” of the symplectic mapping class group SMap(Xl,D).
Namely, we want to show that this group is the quotient of the braid group Br(Dl−1) aris-
ing by adding the following relations:

• (s′123)2 = s2
23;

• ∆2
l−1 = 1;

• ∆2
l−2 = 1, where ∆2

l−1 is the square of the Garside element of the subgroup Brl−2 of
Brl−1 generated by the subset {s34, . . . , sl−1,l}.

5.2 Braid group and mapping class group of the sphere.

Recall the definition of the braid group of the sphere Brl(S
2). This is the fundamental

group of the configuration space which is constructed in the same manner as in the case of
usual braid group:

• Take the l-fold product S2 × · · · × S2 =
(
S2
)
l;

• Remove the diagonal set ∆ which is the union of divisors ∆ij := {zi = zj};

• Take the quotient of
(
S2
)
l\∆ by the symmetric group Syml. This is the configuration

space of the braid group of the sphere Brl(S
2).

• The latter action of Syml on
(
S2
)
l\∆ is free. It follows that we get a surjective homo-

morphism which gives rise the following extension of groups:

1→ PBrl(S
2)→ Brl(S

2)→ Syml → 1.

Moreover, the kernel PBrl(S
2), called the pure braid group of the sphere, is the

fundamental group of the complement
(
S2
)
l\∆.

The ”standard” (geometric?) presentation of the spherical braid group is as follows (see
[10, 11]): We take the standard presentation of the usual braid group Brl with the generators
s1, . . . , sl−1 and add the spherical relation

s1s2 . . . sl−2sl−1 sl−1sl−2 . . . s2s1 = 1.

Notice that the spherical relation can be also written in the form

sl−1sl−2 . . . s2s1 s1s2 . . . sl−2sl−1 = 1

or in terms of Garside elements as
∆2
l = ∆2

l−1.

Here ∆l−1 is the Garside element of the subgroup Brl−1 generated by s1, . . . , sl−2.

Next, we want to find a presentation of the mapping class group of the sphere S2 with l
marked points. We denote this group by Map(S2, l) in the case when the points are (allowed
to be) permuted, and by Map(S2, l!) when points are fixed. Recall that in the case on the disc
D or the plane R2 we have natural isomorphisms

Map(R2, l) = Map(D, l) ∼= Brl and Map(R2, l!) = Map(D, l!) ∼= PBrl,

see e.g. [14]. In the case of the braid group of the sphere the situation is almost the same.
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Theorem 5.1. Let l ≥ 3.

(1) ([12, 49]) In the braid group of the sphere one has the relation ∆4
l = 1.

(2) The center of the group Brl(S
2) has order 2 and is generated by ∆2

l

(3) There are natural isomorphisms of the mapping class groups of the sphere

Map(S2, l) ∼= Brl(S
2, l)
/
Z2〈∆2

l 〉 and Map(S2, l!) ∼= PBrl(S
2, l)
/
Z2〈∆2

l 〉. (5.1)

(4) In particular, the mapping class group of the sphere with l punctures Map(S2, l) is obtained
from the braid group Brl by adding two relations ∆2

l = 1 and ∆2
l−1 = 1.

Remark 5.1. Since ∆2
l = ∆2

l−1 in the braid group of sphere, the relation ∆4
l = 1 is equivalent

to the relation ∆4
l−1 = 1. The key property of the relation ∆4

l = 1 is that it follows from the
spherical relation ∆2

l = ∆2
l−1 (and other braid relations, but nothing more).

In the papers [12, 49] this relation is written in the form (s1 . . . sl−1)2l = 1.
In [49] Lee van Buskirk has shown that for l ≥ 3 ∆2

l is a non-trivial element even in the
group Brl(RP2) (under the natural homomorphism Brl(S

2)→ Brl(RP2) ).

Proof. First we recall (and show) that (s1 . . . sl−1)l = ∆2
l in any braid group Brl. This explains

the equivalence of the two forms (s1 . . . sl−1)2l = 1 and ∆4
l = 1.

Let S = {s1, . . . , sl} be any irreducible Coxeter of compact type. Recall that the latter
means that the corresponding Coxeter group W(S) is finite. In this case W(S) has the unique
element of the maximal length, called the longest element and denoted by w◦ or by w◦(S).
Its primitive lift to the braid group Br(S) is called the Garside element and denoted by ∆ or
by ∆(S). Next, let κ =

∏l
i=1 si be a product of the elements of S, taken in any order. (Notice

that each generator si appears exactly once.) Such an element κ is called Coxeter element of
the group W(S), and its order is called the Coxeter number. We denote the Coxeter number
by h or by hS . It is known that all Coxeter elements (corresponding to all possible orders in
the system S) are conjugated in W(S). It follows that the Coxeter number is well defined.

Let κ̂ be the primitive lift of the Coxeter element to the braid group Br(S). Consider
the power κ̂h. It has two properties: first, it lies in the monoid Br+(S) of positive braids, and
second, its projection to W(S) is trivial. One can show that, under the assumption above about
the irreducibility of the system S, the power κ̂h is a power of ∆2(S), i.e., an even power of
∆(S). Another fact is that this must be the minimal possible power, which means the relation
κ̂h = ∆2(S).

The standard Coxeter element in the symmetric group Syml is κ = s1s2 . . . sl−1 which is a
cycle of the maximal length (l, 1, 2, 3, . . . , l − 1) and its order in l. This gives us the relation
(s1 . . . sl−1)l = ∆2

l in the braid group Brl.

Next, let us denote for a moment X̂l :=
(
S2
)
l\∆ and Xl :=

(
(S2)l\∆

)
/Syml the configuration

spaces for the braid group and the pure braid group of the sphere. Those spaces should be not
confused with the configuration spaces of points on CP2 (even if we use the same notation).
Consider the natural action of the diffeomorphism group Diff+(S2) on those spaces. These
actions are transitive, and the stabilisers of a configuration x = {x1, . . . , xl} are the groups
Diff+(S2,x!) and Diff+(S2,x). Here as above the notation x! means that the points are not
permuted. This gives us the principle bundles:

Diff+(S2,x!) Diff+(S2) X̂l

Diff+(S2,x) Diff+(S2) Xl

i

i
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The induced long exact sequences of homotopy groups are

1

π1Diff+(S2,x!) π1Diff+(S2) π1X̂l π0Diff+(S2,x!) π0Diff+(S2)

π1Diff+(S2,x) π1Diff+(S2) π1Xl π0Diff+(S2,x) π0Diff+(S2)

Syml

=

∂

∂

Taking into account the ”values” of the groups in the diagram we get

1 1

1 Z2 PBrl(S
2) Map(S2,x!) 1

1 Z2 Brl(S
2) Map(S2,x) 1

Syml Syml

=

∂

∂

=

This implies the assertion of the theorem.
Let us explain why the element ∆2

l has order 2 in Brl(S
2) and is trivial in Map(S2, l). Imagine

/ assume that our points x lie in the lower hemisphere S2
− , and λ be the equator of S2. Recall

that in the braid group Brl ∼= Map(D, l) ∼= Map(S2
−, l) the element ∆2

l is represented by the
Dehn along the boundary of the disc. To the group Diff+(S2) this twist is lifted as follows. We
make the full turn of the lower hemisphere, leaving the upper hemisphere unmoved. This will
give us the Dehn twist near equator. However, since all points lie in the lower hemisphere, the
movement of the upper hemisphere plays no role, and we can use any diffeomorphism there.
So we get the same braid ∆2

l if we apply the full rotation of the sphere. Notice, that we have a
homotopy equivalence Diff+(S2) ' SO(3) induced by the embedding SO(3) ⊂ Diff+(S2) and
hence π1Diff+(S2) = Z2 generated by the full rotation of the sphere.

5.3 Relations in the case D.

Recall what we know about generators and relations of the group SMap(X, ξ) in the case
D:

• The group SMap(X, ξ) contains Dehn twists TS along some Lagrangian spheres in appro-
priate homology classes; the group generated by all such twists admit the following set of
generators: s′123; s2,3, s3,4, . . . , sl−1,l. They are Dehn twists along the spheres in the classes
S ′123;S2,3, S3,4, . . . , Sl−1,l.

• The incidences between the classes S ′123;S2,3, S3,4, . . . , Sl−1,l is the same as in the system
of simple roots of D and rank l − 1; In particular, the group generated by Dehn twists
along Lagrangian spheres is a quotient group of the braid group Br(Dl−1).
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• There exists a homomorphism from the group Br(Dl−1) to the group Br(Al−2) which is
obtained by adding an additional relation s′123 = s2,3. Recall also that we have a natural
identification Br(Al−2) = Brl−1. The group Brl−1 can be realised either as the subgroup of
Br(Dl−1) generated by s′123; s3,4, . . . , sl−1,l (generator s2,3 is excluded), or as the generated
by s2,3s3,4, . . . , sl−1,l (generator s′123 is excluded).

• The image of the group SMap(X, ξ) in the diffeotopy group π0(Diff+(X)) is the group
ΓW (X, ξ), isomorphic to the Coxeter group W(Dl−1) and the elements s′123; s2,3, s3,4, . . . , sl−1,l

form the Coxeter system of the standard generators of this group.

• Finally, the kernel of the homomorphism SMap(X, ξ) → π0(Diff+(X)) is isomorphic to
the mapping class group of the sphere with (l − 1) non-permuted marked points. In our
notation above Map(S2, (l − 1)!).

Altogether, we get the diagram which summarises relevant groups.

1 PBr(Dl−1) Br(Dl−1) W(Dl−1) 1

1 PBr(Al−2) Br(Al−2) W(Al−2) 1

1 Map(S2, (l − 1)!) SMap(X, ξ) W(Dl−1) 1

∼=

We see that the system Dl−1 = {s′123; s2,3, s3,4, . . . , sl−1,l} generates the group SMap(X, ξ) and
the generators in this system satisfy the braid relations of type Dl−1. This fact is encoded
in the epimorphism Br(Dl−1) � SMap(X, ξ). We get the desired presentation of the group
SMap(X, ξ) if we find remaining relations between the generators s′123; s2,3, s3,4, . . . , sl−1,l.

Our problem can be described using yet another commutative diagram.

NA W(Dl−1)

1 N Br(Dl−1) W(Dl−1)× Br(Al−2)

PBr(Dl−1) Br(Al−2)ψ

λ

(5.2)

Namely, we must add the following relation: If an element x ∈ Br(Dl−1) lies in the pure
braid group PBr(Dl−1), and if its image ψ(x) in Br(Al−2) is trivial, then the element x is
trivial in SMap(X, ξ). This property could be restated as follows: We impose the condition
x ∈ Br(Dl−1) is trivial in SMap(X, ξ) if it is trivial in Br(Al−2) only on elements x lying in the
subgroup. The subgroup of such elements is the intersection of kernels of the homomorphisms
Br(Dl−1)→ W(Dl−1) and Br(Dl−1)→ Br(Al−2). The first kernel is PBr(Dl−1), and the second
is denoted by NA as on the diagram (5.2). This intersection subgroup, denoted by N is the
kernel of the homomorphism Br(Dl−1)→ W(Dl−1)× Br(Al−2).

Next, observe that N in a normal subgroup in Br(Dl−1). So finding a set of relations means
to find a set of normal generators for the subgroup N in the ambient group.

To simplify the notation we redenote the generators s′123; s2,3, s3,4, . . . , sl−1,l setting a0 =: s′123

and a1 =: s2,3, a2 =: s3,4, . . . , al−2 =: sl−1,l. Then the natural normal generator for NA is
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a1a
−1
0 , since it corresponds to the relation s′123 = s2,3 transforming the group Br(Dl−1) into

Br(Al−2). Next, recall that the epimorphism ψ : Br(Dl−1)→ Br(Al−2) admits a natural splitting
λ : Br(Al−2) → Br(Dl−1) which is the natural embedding induced by the inclusion of the sets
of generators Al−2 ⊂ Dl−1.

We use the splitting λ to find a “normal form” for elements in NA. Let us use the notation

x ∗ y := xyx−1

for conjugation of elements in a group.

Lemma 5.2. Every element x in NA can be represented as a product

x =
(
y1 ∗ (a0a

−1
1 )ε1

)
· . . . ·

(
yn ∗ (a0a

−1
1 )εn

)
=
∏

i yi ∗ (a0a
−1
1 )εi (5.3)

with some elements yi in the subgroup Br(Al−2) and some signs εi = ±1.

Proof. We use the rewriting procedure from the Reidemeister-Schreier algorithm for find-
ing a presentation of a subgroup H of an ambient group G given by a presentation G = 〈 X |R〉
with a set of generators X and a set of relations R, see [8, 28, 29] for a description of the
algorithm. For an element x in the group Br(Dl−1) we denote by x̄ the image λ(ψ(x)). It lies
in the subgroup Br(Al−2). Moreover, we have three easy properties. The first one is that x̄ = x
if x lies in Br(Al−2). The second is relation x1·x2 = x̄1·x̄2, which just means that λ ◦ ψ is a
homomorphism. Finally, a product z1 · z2 of two factorisations of the form (5.3) is again of the
form (5.3).
Claim. Every element x ∈ Br(Dl−1) admits a decomposition

x = z · x̄

where z is a product of the form (5.3).
We prove this using the induction by the length of words representing a given element x.

Since such a presentation surely exists for the unit 1, we can use it as the base of the induction.
So we must prove the step of the induction. For this purpose it is sufficient to show, that if
a given x admits a decomposition x = z · x̄, then so does the product x1 = x · aεi for every
generator ai and every sign ε = ±1. Further, if a generator ai is not a0, then it lies in the
subgroup Br(Al−2), and then x1 = z · (xaεi) will be the desired decomposition.

So the only case to consider is when the generator ai is a0. In the case ε = +1 we get

x·a0 = z·x̄·a0 = z·(x̄·a0a
−1
1 ·x̄−1)·x̄·a1 = z·(x̄ ∗ (a0a

−1
1 )) · (x̄·a1).

The underlined part is a new part z1, whereas

x·a0 = x̄·ā0 = x̄·a1.

So x·a0 admits a decomposition of the desired form. The product x · a−1
0 is treated similarly.

This finishes the proof of the claim.
Now, applying the claim to elements x from NA we conclude the assertion of the lemma.
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Our next step is related to the following diagram with exact rows.

1 N NA Zl−2
2 1

1 PBr(Dl−1) Br(Dl−1) W(Dl−1) 1

1 PBr(Al−2) Br(Al−2) W(Al−2) 1

ψN

λN

ψW λW

ψBr

λBr

(5.4)

The homomorphisms ψW and λW on the diagram have the meaning similar to the one for the
diagram (5.2): λW is a splitting homomorphism, and the group W(Dl−1) is a semi-direct product
W(Al−2) n Zl−2

2 . The map λN is not a homomorphism, it will be constructed below.
In particular, we obtain a natural action of W(Al−2) on Zl−2

2 by conjugation. We denote
this action by p ∗ u with p ∈ W(Al−2) and u ∈ Zl−2

2 .
It follows from the definition of the group N that this group can be defined as the ker-

nel of the natural homomorphism NA → W(Dl−1). However, since the composition NA →
W(Dl−1)→ W(Al−2) is zero, the image ofNA in W(Dl−1) lies in the kernel of the homomorphism
W(Dl−1)→ W(Al−2). The latter kernel is isomorphic to Zl−2

2 . The description of the groups in
the short exact sequence

1→ Zl−2
2 → W(Dl−1)→ W(Al−2)→ 1

is as follows. We realise the group W(Dl−1) as the reflection group in the space Rl−1 with
the coordinates x1, . . . , xl−1 which permutes the coordinates xi and inverts the even number
of them. Each generator ai, i = 1, . . . , l − 2 is a reflection across the hyperplane given by
the equation xi − xi+1 = 0, so ai exchanges the coordinate xi with xi+1. The generator a0

is a reflection across the hyperplane given by the equation x1 + x2 = 0, so a0 replaces the
pair (x1, x2) by (−x2,−x1). So if permutations of axes are not allowed, only the inversion of
coordinates remain. This group is our Zl−2

2 .
We use the multiplicative notation for the group operation in Zl−2

2 . Let us introduce the
following elements of the group Zl−2

2 acting on Rl−1 in the way described above. By rij we
denote the involution inverting two axes: xi and xj. We have clearly two sorts of relations:

r2
ij = 1 and rij·rjk = rik if i 6= j 6= k 6= i. Notice also that r12 is the image of the generator a0a

−1
1

in Zl−2
2 . To make our notation uniform we set rii := 1 and rji = rij. As a set of generators of

Zl−2
2 we choose r12, r13, . . . , r1,l−1. This is a basis of Zl−2

2 as Z2-vector space.
Now let us find a set of generators applying a modified version of the Reidemeister-Schreier

algorithm.

Theorem 5.3. The group SMap(X, ξ) of type D is the quotient of the group Br(Dl−1) obtained
by adding the relations

(R1) [b, a0a
−1
1 ] = 1 for every b in the pure braid group PBr(Al−2);

(R2) (a0a
−1
1 )2 = 1.

Proof. An equivalent assertion is that the subgroup NA in the group Br(Dl−1) admits the
following system of normal generators:
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(r1) [b, a0a
−1
1 ] for every b in the pure braid group PBr(Al−2);

(r2) (a0a
−1
1 )2.

First, we must check that the relations in the list hold. This means vanishing of correspond-
ing elements in both groups W(Dl−1) and Br(Al−2). This can be done easily. Indeed, by the
very definition of the pure braid group of any Coxeter system S, b lies in the pure braid group
iff its image in the Coxeter group W(S) vanishes. Then the commutator [b, x] will also vanish.
Similarly, since a0a

−1
1 vanishes in Br(Al−2) the commutator [b, a0a

−1
1 ] must also vanish. The

vanishing of (a0a
−1
1 )2 in both groups is also an easy fact.

In the proof of the theorem we shall need some more relations which are consequences of
the relations (R2), (R3). Let us make the notation

(R0) The braid relations between the generators a0; a1, . . . , al−2.

The next relation we need is a consequence of the braid relations. Let b ∈ Br(Al−2) be a
positive primitive braid, i.e., a braid whose length in Br(Al−2) and in W(Al−2) is the same. In
terms of the arrows from the diagram (5.4) this means that b = λBr(ψBr(b)). Let us denote
by b̄ the permutation of the set {1, . . . , l − 1} defined by b, i.e., b̄ = ψBr(b). Assume that b̄
commutes with r12 in the group W(Dl−1). We claim that in this case b commutes with a1a

−1
0 in

the group Br(Dl−1). The commutativity [b̄, r12] = 1 means that the conjugation b ∗ r12 equals
r12. This implies that the subsets {1, 2} and {3, . . . , l − 1} are invariant under the action by
b̄. This means that b̄ lies in the subgroup of W(Al−2) generated by a1; a3, . . . , al−2. In other
words, there is a word representing b̄ which does not contain a2. Moreover, the general theory
of Coxeter groups (see [21, 7]) implies that there exists a W-reduced word w with this property
(see ibid). Now, the primitivity of b implies that the same word w is a word representing the
braid b. Now, since the generators a1; a3, . . . , al−2 commute with a1 and a0, we get the desired
property [b, a1a

−1
0 ] = 1.

Next, let us observe that every braid b ∈ Br(Al−2) can be factorised as b = b′ · b′′ where b′

is primitive and b′′ is a pure braid. Now we can conclude the following relation:

(R3) [b, a0a
−1
1 ] = 1 provided b ∗ r12 = r12 for any braid b ∈ Br(Al−2).

This relation can be read as follows:
(R3′) If b1 ∗ r12 = b2 ∗ r12 for two braids b1, b2, then b1 ∗ (a0a

−1
1 ) = b2 ∗ (a0a

−1
1 ).

The next relation we shall need is:

(R4) Let b1, b2, b3 be three braids such that b1 ∗ r12 = rij, b2 ∗ r12 = rjk, and b3 ∗ r12 = rik, so
that rij + rjk = rik in Zl−2

2 . Then(
b1 ∗ (a0a

−1
1 )
)
·
(
b2 ∗ (a0a

−1
1 )
)

= b3 ∗ (a0a
−1
1 )

The proof of this property is done as follows. First, we observe that the symmetric group
W(Al−2) acts transitively on the triples (i, j, k). This implies that it is sufficient to prove this
relation for the special case (i, j, k) = (1, 2, 3). The latter reads(

a0a
−1
1

)
·
(
(a1a2) ∗ (a0a

−1
1 )
)

= a2 ∗ (a0a
−1
1 ).
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Let us now calculating directly (again in the group generated by a0, a1, a2) using the relations
established above and denoting a1 =: a, a2 =: b, a0 =: c we get(

a0a
−1
1

)
·
(
(a1a2) ∗ (a0a

−1
1 )
)

= ca−1ab ca−1b−1a−1 = cbc a−1b−1a−1 = bcb b−1a−1b−1

= b ∗ (ca−1) = a2 ∗ (a0a
−1
1 )

Finally, we need the following relation:

(R5) Let b1, b2 be two braids such that b1 ∗ r12 = rij and b2 ∗ r12 = rkm with pairwise distinct
i, j, k,m. In particular, rij and rkm commute in Zl−2

2 . Then b1 ∗ (a0a
−1
1 ) and b2 ∗ (a0a

−1
1 )

commute.

As above, conjugation allows us to assume that (i, j, k,m) = (1, 2, 3, 4). Let us denote
r̃ij := b ∗ (a0a

−1
1 ) in the case when b ∗ r12 = rij. Notice that we have r̃ij = r̃ji and r̃2

ij = 1. Now
we using (R4) get

r̃12r̃34 = r̃12r̃34r̃
2
12 = r̃12(r̃23 r̃24)r̃12r̃12 = r̃13r̃14r̃12 = r̃34r̃12

where each underlined expression is changed using (R4).

Now we are ready to give a proof of the theorem. By above, there exists a surjective
homomorphism Br(Dl−1)→ SMap(X, ξ).

Let x be any element of Br(Dl−1) which is identical in SMap(X, ξ). Then x equals 1 in
Br(Al−2). Thus by Lemma 5.2 it can be written as a product of bi ∗ (a0a

−1
1 ) and bj ∗ (a0a

−1
1 )−1

for some braids bi, bj. Moreover, the evaluation of such a product in W(Dl−1) is 1. We must
show that x ≡ 1 modulo the relations (R1) and (R2). However, the relation (R3’) says that
the value of each factor bi ∗ (a0a

−1
1 ) modulo (R1) and (R2) depends only on the value bi ∗ r12 in

the group Zl−2
2 , whereas the relations (R2–5) ensure that the value of the factorisation depends

only on the value in Zl−2
2 .
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