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Abstract. By an additive action on an algebraic variety X we mean a regular effective
action Gn

a ×X → X with an open orbit of the commutative unipotent group Gn
a . In these

two papers, we give a classification of additive actions on complete toric surfaces and a
uniqueness criterion for additive action on a complete toric variety.

1. Introduction

Let K be an algebraically closed field of characteristic zero. Denote its additive group by
Ga = (K,+). Consider the commutative unipotent group Gn

a = Ga × . . . × Ga (n times).
By an additive action on an irreducible algebraic variety X of dimension n we mean an
effective regular action Gn

a×X → X with an open orbit. If a complete variety X admits an
additive action, we can consider variety X as an equivariant completion of affine space An

with respect to the group of parallel translations on An.
A systematic study of additive actions began with the work of Hassett and Tschinkel [20].

They introduced a correspondence between additive actions on the projective space Pn
and local (n + 1)-dimensional commutative associative algebras with a unit; see also [21,
Proposition 5.1] for a more general result. Hassett-Tschinkel correspondence allows to
obtain the classification of additive actions on projective space Pn for n ≤ 5; these are
precisely the cases when the number of additive actions is finite.

The study of additive actions was originally motivated by Manin’s conjecture about
the distribution of rational points of bounded height on algebraic varieties, see works of
Chambert-Loir and Tschinkel [8, 9].

There are some classification results for additive actions on various classes of varieties,
in particular, on flag varieties [1, 14, 17, 18], singular del Pezzo surfaces [13], Hirzebruch
surfaces [20], and weighted projective planes [2].

Some results in this direction are devoted to the uniqueness of additive actions. In [23], it
is proved that an additive action on a smooth nondegenerate projective quadric is unique up
to isomorhpism. Uniqueness of an additive action on a flag variety that is not isomorphic to
a projective space is proved indepently and by completely different methods in [18] and [14].

The present work concerns the uniqueness of additive actions in the case of toric varieties.
This problem was raised in [7, Section 6]. In [12], it is proved that Ga-actions on a toric
variety X normalized by the acting torus T are in bijection with some special elements in the
character lattice of the torus T called Demazure roots of the corresponding fan Σ. LetR(X)
be the Cox ring of the variety X. Cox [10] noted that normalized Ga-actions on a toric
variety can be interpreted as certain Ga-subgroups of automorphisms of the ring R(X). In
turn, such subgroups correspond to homogeneous locally nilpotent derivations of this ring.

2010 Mathematics Subject Classification. Primary 14L30, 14M25; Secondary 13N15, 14J50, 14M17.
Key words and phrases. Toric variety, automorphism, unipotent group, locally nilpotent derivation, Cox

ring, Demazure root.
The author was supported by RSF grant 19-11-00172.

1



2 SERGEY DZHUNUSOV

In [6], all toric varieties admitting an additive action are described in terms of their fans.
It is proved that if a complete toric variety X admits an additive action, then it admits
an additive action normalized by the acting torus. Moreover, any two normalized additive
actions on X are isomorphic.

This work is made up on the basis of two papers [15] and [16]. In [15], all additive
actions on a complete toric surface were classified. It turns out that there are no more than
two non-isomorphic additive actions on a complete toric surface, see Section 6. In [16], a
criterion of uniqueness on additive actions on toric varieties was proved, see Section 7.

After presenting some preliminaries on toric varieties and Cox ring (Section 2) and Ga-
actions and Demazure roots (Section 3), we describe the results of [6] (Section 4). In
Section 5, we prove some facts on Demazure roots of a toric variety admitting an additive
action. In Section 6, we classify additive actions on complete toric surfaces. In Section 7, we
prove the criterion on uniqueness of additive actions on toric varieties. Finally, in Section 8
we give some corollaries and examples and discuss the case of toric surfaces.

The author is grateful to his supervisor Ivan Arzhantsev and to Yulia Zaitseva for useful
discussions and comments.

2. Toric varieties and Cox rings

In this section, we introduce basic notation of toric geometry, see [11, 19] for details.

Definition 1. A toric variety is a normal variety X containing a torus T ' (K×)n as a
Zariski open subset such that the action of T on itself extends to an action of T on X.

Let M be the character lattice of T and N be the lattice of one-parameter subgroups
of T . Let 〈· , ·〉 : N×M → Z be the natural pairing between the lattice N and the lattice M .
It extends to the pairing 〈· , ·〉Q : NQ ×MQ → Q between the vector spaces NQ = N ⊗Z Q
and MQ = M ⊗Z Q.

Definition 2. A fan Σ in the vector space NQ is a finite collection of strongly convex
polyhedral cones σ such that

(1) for all cones σ ∈ Σ, each face of σ is also in Σ;
(2) for all cones σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of the cones σ1 and σ2.

There is a correspondence between toric varieties X and fans Σ in the vector space NQ,
see [11, Section 3.1] for details.

Here, we recall basic notions of the Cox construction, see [3, Chapter 1] for more details.
Let X be a normal variety. Suppose that the variety X has a free finitely generated divisor
class group Cl(X) and there are only constant invertible regular functions on X. Denote the
group of Weil divisors on X by WDiv(X) and consider a subgroup K ⊆WDiv(X) which
maps onto Cl(X) isomorphically. The Cox ring of the variety X is defined as

R(X) =
⊕
D∈K

H0(X,D), where H0(X,D) = {f ∈ K(X)× | div(f) +D > 0} ∪ {0}

and the multiplication on homogeneous components coincides with the multiplication in
the field of rational functions K(X) and extends to the Cox ring R(X) by linearity. It is
easy to see that up to isomorphism the graded ring R(X) does not depend on the choice
of the subgroup K.

Suppose that the Cox ring R(X) is finitely generated. Then X := SpecR(X) is a normal
affine variety with an action of the torus HX := SpecK[Cl(X)]. There is an open HX-

invariant subset X̂ ⊆ X such that the complement X\X̂ is of codimension at least two
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in X, there exists a good quotient πX : X̂ → X̂//HX , and the quotient space X̂//HX is
isomorphic to X, see [3, Construction 1.6.3.1]. Thus, we have the following diagram:

X̂
i−−−→ X = SpecR(X)y//HX

X

It is proved in [10] that if X is toric, then R(X) is a polynomial algebra K[x1, . . . , xm],
where the variables xi correspond to T -invariant prime divisors Di on X or, equivalently, to
the rays ρi of the corresponding fan Σ. The Cl(X)-grading on R(X) is given by deg(xi) =

[Di]. In this case, X is isomorphic to Km, and X \ X̂ is a union of some coordinate
subspaces in Km of codimension at least two. Denote the torus (K∗)m acting diagonally on
the variety X by T. Therefore, there are two gradings on R(X), namely, Zm-grading which
corresponds to the T-action and Cl(X)-grading which corresponds to HX-action.

Let us desribe a connection between the gradings by the group Cl(X) and by the
group Zm on R(X). Each w ∈ M gives a character χw : T → K∗, and hence, χw is
a rational function on X. By [11, Theorem 4.1.3], the function χw defines a principal
divisor div(χw) = −

∑
ρ〈pρ, w〉Dρ. Let us consider a map M −→ Zm defined by w 7→

(〈p1, w〉, . . . , 〈pm, w〉), where ρ1, . . . , ρm are one-dimensional cones of Σ and pi are prim-
itive vectors on rays ρi. By [19, §3.4], this map gives an exact sequence

0 −→M −→ Zm −→ Cl(X) −→ 0.

Here, a divisor D ∈ ZΣ(1) = Zm determines an element [D] ∈ Cl(X). We identify the group
Zm with the character lattice of the torus (K∗)m. Thus, every element w ∈M corresponds
to the character χw of the torus T. Moreover, for any w,w′ ∈M the equality w = w′ holds
if and only if χw = χw

′
.

3. Demazure roots and locally nilpotent derivations

Let X be a toric variety of dimension n, and Σ be the fan of the variety X.
Let Σ(1) = {ρ1, . . . , ρm} in N be the set of rays of the fan Σ and pi be the primitive
lattice vector on the ray ρi.

For any ray ρi ∈ Σ(1), we consider the set Ri of all vectors e ∈M such that

(1) 〈pi, e〉 = −1 and 〈pj, e〉 ≥ 0 for j 6= i, 1 ≤ j ≤ n;
(2) if σ is a cone of Σ and 〈v, e〉 = 0 for all v ∈ σ, then the cone generated by σ and ρi

is in Σ as well.

Elements of the set R =
m⋃
i=1

Ri are called Demazure roots of the fan Σ (see [12, Section 3.1]

or [22, Section 3.4]). Let us divide the roots R into two classes:

S = R ∩ −R, U = R \S.

Roots in S and U are called semisimple and unipotent, respectively.

A derivation ∂ of an algebra A is said to be locally nilpotent if for every f ∈ A, there
exists k ∈ N such that ∂k(f) = 0. For any locally nilpotent derivation ∂ on A, the
map ϕ∂ : Ga × A→ A, ϕ∂(s, f) = exp(s∂)(f) defines a structure of a rational Ga-algebra
on A. A derivation ∂ on a graded ring A =

⊕
ω∈K

Aω is said to be homogeneous if it re-

spects the K-grading. If f, h ∈ A\ ker ∂ are homogeneous, then ∂(fh) = f∂(h) + ∂(f)h is
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homogeneous too, and deg ∂(f)− deg f is equal to deg ∂(h)− deg h. Thus, any homoge-
neous derivation ∂ has a well-defined degree given as deg ∂ = deg ∂(f) − deg f for any
homogeneous element f ∈ A\ ker ∂.

Every locally nilpotent derivation of Cl(X)-degree zero on the Cox ring R(X) induces
a regular action Ga × X → X. In fact, any regular Ga-action on X arises this way,
see [10, Section 4] and [3, Theorem 4.2.3.2]. If a Ga-action on a variety X is normalized by
the acting torus T , then the lifted Ga-action on X = Km is normalized by the diagonal torus
T. Conversely, any Ga-action on Km normalized by the torus T and commuting with the
subtorus HX induces a Ga-action on X. This shows that Ga-actions on X normalized by
the torus T are in bijection with locally nilpotent derivations of the Cox ring K[x1, . . . , xm]
that are homogeneous with respect to the grading by the lattice Zm and have degree zero
with respect to the Cl(X)-grading.

For any element e ∈ Ri, we consider the locally nilpotent derivation ∂e =
∏

j 6=i x
〈pj ,e〉
j

∂
∂xi

on the algebra R(X). This derivation has degree zero with respect to the grading by the
group Cl(X). This way one obtains a bijection between Demazure roots in R and locally
nilpotent derivations on the ring R(X) which are homogeneous with respect to Zm-grading
and have degree zero with respect to the Cl(X)-grading. The latter ones, in turn, are in
bijection with Ga-actions on X normalized by the acting torus.

Proposition 1. [10, Proposition 4.4] There is a one-to-one correspondence

Ri ↔ {(xi, xD) : xD ∈ R(X) is a monomial, xD 6= xi, deg(xD) = deg(xi)}.

Corollary 1. If a homogeneous component C of the Cox ring R(X) contains a variable xi,
then the vector space C is spanned by xi and ∂e(xi), where e runs over Ri.

4. Complete toric varieties admitting an additive action

In this section, we shortly present the results of [6]. Let X be a toric variety of dimension
n admitting an additive action, and Σ be the fan of the variety X.

Since the variety X admits an additive action, the variety X contains an open Gn
a-orbit

isomorphic to the affine space Kn. By [4, Lemma 1], any invertible function on the variety X
is constant and the divisor class group Cl(X) is freely generated. In particular, the Cox
ring R(X) introduced in Section 2 is well defined.

We denote primitive vectors on the rays of the fan Σ by pi, where 1 ≤ i ≤ m.

Definition 3. A set e1, . . . , en of Demazure roots of a fan Σ of dimension n is called a
complete collection if 〈pi, ej〉 = −δij, where 1 ≤ i, j ≤ n for some ordering of p1, . . . , pm.

An additive action on a toric variety X is said to be normalized if the image of the group
Gn
a in Aut(X) is normalized by the acting torus T .

Theorem 1. [6, Theorem 1] Let X be a toric variety. Then normalized additive actions
on X are in bijection with complete collections of Demazure roots of the fan Σ.

Corollary 2. A toric variety X admits a normalized additive action if and only if there is
a complete collection of Demazure roots of the fan Σ.

Theorem 2. [6, Theorem 2] Any two normalized additive actions on a toric variety are
isomorphic.

Theorem 3. [6, Theorem 3] Let X be a complete toric variety. The following conditions
are equivalent:
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(1) there exists an additive action on X;
(2) there exists a normalized additive action on X;
(3) a maximal unipotent subgroup U of the automorphism group Aut(X) acts on X with

an open orbit.

Definition 4. The negative octant of the rational vector space V with respect to a ba-

sis f1, . . . , fn is the cone

{
n∑
i=1

λifi | λi ≤ 0

}
⊂ V .

Proposition 2. Let X be a complete toric variety. The following statements are equivalent:

(1) there exists an additive action on X;
(2) we can order rays of the fan Σ in such a way that the primitive vectors on the first n

rays form a basis of the lattice N , and the remaining rays lie in the negative octant
with respect to this basis.

Proof. We prove (1)⇒ (2). Let us check that e1, . . . , en is a complete collection of Demazure
roots, then p1, . . . , pn form a basis of the lattice N . Assume that the vectors p1, . . . , pn are
linearly dependent, i.e. there exists a non-trivial linear relation α1p1 + . . .+ αnpn = 0.
Then we get −αi = 〈α1p1 + . . .+ αnpn, ei〉 = 0 for all 1 ≤ i ≤ n, a contradiction. Consider
an arbitrary vector v =

∑n
i=1 νipi of the lattice N . By definition of a complete collection,

we get 〈v, ei〉 = −νi ∈ Z. Therefore, the vectors p1, . . . , pn form the basis of the lattice N .

All other vectors pj, j > n, are equal to −
∑n

l=1 αjlpl for some integer αjl. By definition
of a Demazure root, we obtain

0 ≤ 〈pj, ei〉 =
∑

αjlδli = αji.

The converse implication is straightforward.
Equivalence (1)⇔ (3) follows from Theorems 1 and 3. �

We can order pi in such a way that the first n vectors form a basis of the lattice N and the
remaining vectors pj (n < j ≤ m) are equal to

∑n
i=1−αjipi for some non-negative integers

αji.

Corollary 3. The elements deg(xj), n < j ≤ m form a basis of Cl(X) ' Zm−n and an

element deg(xi), 1 ≤ i ≤ n is equal to
m∑

j=n+1

αji deg(xj).

Proof. The matrix of the linear map M → Zm in the basis p∗1, . . . , p
∗
n in M and in the

standart basis of the lattice Zm is equal to

(
In
−A

)
, where In is the identity matrix of

size n and A = (αji), n < j ≤ m, 1 ≤ i ≤ n. Therefore, the elements deg(xj), n < j ≤ m

form a basis of Cl(X) ' Zm−n and the elements deg(xi) are equal to
m∑

j=n+1

αji deg(xj).

�

5. Demazure roots of a variety admitting an additive action

Let X be a complete toric variety of dimension n admitting an additive action, and Σ
be the fan of the variety X. Denote the primitive vectors on the rays ρi of the fan Σ by pi,
where 1 ≤ i ≤ m.

From Proposition 2 it follows that we can order pi in such a way that the first n vec-
tors form a basis of the lattice N and the remaining vectors pj (n < j ≤ m) are equal
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to
∑n

i=1−αjipi for some non-negative integers αji. Let us denote the dual basis of the basis
p1, . . . , pn by p∗1, . . . , p

∗
n.

Lemma 1. Consider 1 ≤ i ≤ n. The set Ri is a subset of the set −p∗i +
n∑

l=1,l 6=i
Z≥0p

∗
j and

the vector −p∗i is contained in Ri.

Proof. Let e =
n∑
i=1

εip
∗
i be a Demazure root from Ri. By the definition, the Demazure roots

from Ri are defined by the following equations:

εi = −1
εl ≥ 0, l ≤ n, l 6= i

αji −
n∑
l=1
l 6=i

εlαjl ≥ 0, n < j ≤ m
(1)

It is clear that all possible solutions lie in the set −p∗i +
n∑
l=1
l 6=i

Z≥0p
∗
l , and the vector −p∗i

satisfies them. �

Consider the set Reg(S) = {u ∈ N : 〈u, e〉 6= 0 for all e ∈ S}. Any element u from the
set Reg(S) divides the set of semisimple roots S into two classes as follows:

S+
u = {e ∈ S : 〈u, e〉 > 0}, S−u = {e ∈ S : 〈u, e〉 < 0}.

At this point, any element of Su
+ is called positive and any element of S−u is called negative.

Proposition 3. Let X be a complete toric variety admitting an additive action, and

R =
m⋃
i=1

Ri be the set of its Demazure roots. Then

(1) any element e ∈ Rj, j > n, is equal to p∗i′ for some 1 ≤ i′ ≤ n;

(2) all unipotent Demazure roots lie in the set
n⋃
i=1

Ri;

(3) there exists a vector u ∈ Reg(S) such that S+
u ⊂

n⋃
i=1

Ri.

Proof. We start with the first statement. Consider a root e =
n∑
i=1

εip
∗
i ∈ Rj, where j > n.

By definition of Demazure roots, we have −〈pj, e〉 =
n∑
i=1

αjiεi = 1 and εi ≥ 0 for all

1 ≤ i ≤ n. Consider the set Ij = {i : αji > 0}. Then there exists s ∈ Ij such that εs = 1
and for all l ∈ Ij \ {s} the equality εl = 0 holds. Since X is complete, there is no half-space
with all vectors pi inside. Hence, for all l ∈ {1, . . . , n} \ Ij there exists r > n such that

αrl > 0. Since 〈pr, e〉 = −
n∑
i=1

αriεi ≥ 0, we have εl = 0. This implies e = p∗s. The first

statement is proved.
Let us prove the second statement. As above, consider the root e = p∗ij ∈ Rj, j > n.

From the first statement of Proposition 3 and Lemma 1 it follows that the element −e is
a root and lies in Rij for some ij. This means that the root e is semisimple. Hence, all
unipotent roots lie in the set

⋃n
i=1 Ri.
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To prove (3), we should find a vector u from the set Reg(S) such that the set⋃m
j=n+1 Rj contains only negative roots. Consider the vector u0 = −

n∑
i=1

pi. For every

root e ∈
⋃m
j=n+1 Rj, we get the inequality 〈u0, e〉 = −1 < 0. We can add a small rational

vector ∆u = 1
Q

∆u′ ∈ NQ, where ∆u′ ∈ N and Q is a positive integer such that the inequal-

ity 〈u0 + ∆u, e〉Q < 0 holds for all roots e ∈
⋃m
i=n+1 Ri. So, we have Q(u0 + ∆u) ∈ Reg(S),

and we obtain the required vector u := Q(u0 + ∆u). �

Now we recall basic definitions from the theory of partially ordered sets.

Definition 5. Consider a set P and a binary relation ≤ on P . Then ≤ is a preorder if it
is reflexive and transitive; i.e., for all a, b and c in P , we have:

(1) a ≤ a (reflexivity);
(2) if a ≤ b and b ≤ c, then a ≤ c (transitivity).

Two elements a, b are comparable if a ≤ b or b ≤ a. Otherwise, they are incomparable. If
every pair of different elements is incomparable, then the preorder is called trivial.

An element a in P is maximal if for any element b in P either b ≤ a or the elements a, b
are incomparable.

Define a preorder ≤ on the set of rays {ρ1, . . . , ρn} in the following way:

ρi1 ≤ ρi2 if αji1 ≤ αji2 for every n < j ≤ m.

6. Additive actions on complete toric surfaces

Let X be a complete toric surface with the fan Σ. Suppose that X admits an additve
action. Denote primitive vectors on the rays of the fan Σ by p1, . . . , pm. By Proposition 2,
we can assume that p1, p2 is the standard basis of NQ and pj, j > 2 is equal to −αj1p1−αj2p2.

-

6

p1

p2

�����)
�
�
�
�
�
��

AI
AII

Definition 6. Let us call a fan Σ wide if it satisfies one of the fol-
lowing equivalent conditions:

(1) There exist 2 < j1, j2 ≤ m such that αj11 > αj12 and
αj21 < αj22;

(2) R1 = {−p∗1} and R2 = {−p∗2}.

Proof of Equivalence. From the definition of Demazure roots it fol-
lows that

R1 =

{
(−1, k) : 0 ≤ k ≤ min

j>2

(
αj1
αj2

)}
, R2 =

{
(k,−1) : 0 ≤ k ≤ min

j>2

(
αj2
αj1

)}
.

From this it follows that |R1| =

⌊
min
j>2

(
αj1
αj2

)⌋
+ 1, |R2| =

⌊
min
j>2

(
αj2
αj1

)⌋
+ 1. This

implies the equivalence. �

Let us consider two areas in NQ:

AI = {(x, y) ∈MQ : x ≤ 0, y ≤ 0, x < y},
AII = {(x, y) ∈MQ : x ≤ 0, y ≤ 0, x > y}.

The first condition from the definition of a wide fan means that there is a ray of Σ in the
area AI and there is a ray in the area AII .

Now we are ready to formulate the main theorem of this section.
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Theorem 4. Let X be a complete toric surface admitting an additive action. Then there
is only one additive action on X if and only if the fan Σ is wide; otherwise there exist two
non-isomorphic additive actions, one is normalized and the other is not.

Proof of Theorem 4. We are going to classify additive actions on X by describing two-
dimensional subgroups of a maximal unipotent subgroup U of the automorphism group
Aut(X) up to conjugation in Aut(X).

Fix a vector u ∈ Reg(S) that satisfies assertion (3) of Proposition 3. Hereafter, we write
S+ instead of S+

u . Denote the set S+ ∪ U by R+. From Proposition 3 it follows that R+

lies in the set
⋃n
i=1 Ri. All the one-parameter subgroups of roots from R+ generate the

maximal unipotent subgroup U in the group Aut(X), see [10, Proposition 4.3]. Denote the
set R+ ∩Ri by R+

i .

Lemma 2. There exists i ∈ {1, 2} such that |R+
i | = 1. Moreover, maxi=1,2 |R+

i | =
maxi=1,2 |Ri|.

Proof. From the definition of Demazure roots it follows that

R1 =

{
(−1, k) : 0 ≤ k ≤ min

j>2

(
αj1
αj2

)}
, R2 =

{
(k,−1) : 0 ≤ k ≤ min

j>2

(
αj2
αj1

)}
.

We have |R1| > 1, |R2| > 1 simultaneously if and only if

R1 = {(−1, 0), (−1, 1)}
R2 = {(0,−1), (1,−1)}.

Since the roots (−1, 1), (1,−1) are opposite to each other, only one of them can lie in R+.

Only the roots (−1, 1), (1,−1) can lie in the set (R1 ∩ −R2) ∪ (R2 ∩ −R1). Thus, we
have |R+

1 | = 1, R+
2 = R2 or |R+

2 | = 1, R+
1 = R1. �

Without loss of generality, it can be assumed that |R+
1 | = 1. Denote the cardinality of the

set R+
2 by d+1. By Definition 6 the fan is wide if and only if d is equal to 0. In there term,

we have R+
1 = {(−1, 0)} and R+

2 = {(k,−1) : 0 ≤ k ≤ d}. Denote LND that corresponds
to the root (−1, 0) ∈ R+

1 by δ, and LNDs that correspond to roots (k,−1) ∈ R+
2 , 0 ≤ k ≤ d

by ∂k.

Lemma 3. The following equations hold:

[δ, ∂k] = k∂k−1, [∂k, ∂k′ ] = 0.

Proof. In this proof, we use notation introduced in Section 2. The correspondence between
Demazure roots and LNDs implies:

δ =
m∏
j=3

x
αj1

j

∂

∂x1

, ∂k = xk1

m∏
j=3

x
αj2−kαj1

j

∂

∂x2

It can be easily checked that the derivations ∂k commute with each other. Moreover, direct
computations show that the commutator [δ, ∂k] is equal to the derivation k∂k−1. �

Let us find all commutative subgroups in the group U that correspond to additive actions.
Such groups are in bijection with some pairs (D1, D2) of commuting LNDs. Note that not
every pair of commuting LNDs corresponds to an additive action.
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Lemma 4. In the above terms, there is an invertible linear operator φ on the vector space
〈D1, D2〉 that sends the derivations D1, D2 toφ(D1) = δ +

d∑
k=0

µk∂k

φ(D2) = ∂0

, µk ∈ K (2)

Proof. Every pair of derivations has the form D1 = λ(1)δ +
∑
µ

(1)
k ∂k and D2 = λ(2)δ +∑

µ
(2)
k ∂k. If λ(1) = λ(2) = 0, then dimension of the orbit in the total space X is less

than 2. Therefore, the orbit can not become open after the factorization X̂ → X. Thus,
without loss of generality we can assume that λ(1) 6= 0. We can convert derivations D1, D2

to the form δ +
∑
µ

(1)
k ∂k,

∑
µ

(2)
k ∂k. From Lemma 3 it follows that the derivations D1, D2

commute if and only if µ
(2)
k = 0 for k > 0. Thus, we can convert derivations D1, D2 to the

form δ +
∑
µ

(1)
k ∂k, µ

(2)
0 ∂0, with µ

(2)
0 6= 0. We can assume that µ

(2)
0 = 1. �

Lemma 5. Every pair of derivations of form (2) corresponds to an additive action.

Proof. Let us consider the G2
a-action corresponding to the LNDs D1, D2. We prove that the

group G2
a×HX acts in the total space Km with an open orbit. By construction, the group G2

a

changes exactly two of the coordinates x1, . . . , xm, while the weights of the remaining m−2
coordinates with respect to the Cl(X)-grading form a basis of the lattice of characters of
the torus HX . From this it follows that there exists a point p ∈ Km with trivial stabilizer.
Due to dim(G2

a ×HX) = m we get that the orbit of the point p is open. �

Hereafter, we suppose that D1, D2 have form (2). From Lemma 4 it follows that if d = 0,
then derivations D1, D2 can be converted to δ, ∂0 respectively. Such LNDs correspond to a
normalized additive action and every additive action is isomorphic to this action.

Hereafter, we assume that d 6= 0.

Lemma 6. There exists an automorphism ψ ∈ Aut(R(X)) that conjugates D1, D2 to the
form {

ψ(D1) = δ + µd∂d
ψ(D2) = ∂0

(3)

Proof. We are going to find numbers ηk ∈ K such that the automorphism ψ = exp(δ +
d∑

k=1

ηk∂k) is the desired one.

The automorphism ψ conjugates LNDs D1, D2 to the form

exp(δ +
∑
k

ηk∂k)D1 exp(−δ −
∑
k

ηk∂k) =

= Ad

(
exp

(
δ +

∑
k

ηk∂k

))
D1 = exp

(
ad

(
δ +

∑
k

ηk∂k

))
D1 =

= D1 +
∞∑
l=1

ad

(
δ +

∑
k

ηk∂k

)l
l!

D1 = δ +
d∑

k=0

(
µk +

d−k∑
l=1

(k + l)!

k!
(−µk+l + ηk+l)

)
∂k;

exp(δ +
∑
k

ηk∂k)D2 exp(−δ −
∑
k

ηk∂k) = D2.
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Here, we get the system of linear equations

µk +
d−k∑
l=1

(k + l)!

k!
(−µk+l + ηk+l) = 0, 0 ≤ k ≤ d− 1,

in variables η1, . . . , ηd. This system has a unique solution as an upper triangular system
and it is the solution we are looking for. �

Hereafter, we suppose that D1, D2 have form (3). Thus, we have a family of additive
actions parameterized by the number µd:

x1→exp(s1D1 + s2D2)x1=x1 + s1

m∏
j=3

x
αj1

j

x2→exp(s1D1 + s2D2)x2=x2 + (s2 +
µds

d
1

d!
)
m∏
j=3

x
αj2

j +
d∑

k=1

µds
d−k
1

k!
xk1

m∏
j=3

x
αj2−kαj1

j

(4)

Note that every action corresponding to the pair of LNDs of form (3) acts on xj, 3 ≤ j ≤ m
identically.

Lemma 7. All additive actions with µd 6= 0 are non-normalized and isomorphic to each
other.

Proof. We conjugate the pair of LNDs that have form (3) by an element t of the maximal
torus T = (K∗)m. One can easily see that see that for a homogeneous LND that corresponds
to the Demazure root e ∈ M and an element t of the maximal torus T we have tDet

−1 =

χe(t)D. Indeed, the derivation De is equal to
∏
j 6=i

x
〈pj ,e〉
j

∂
∂xi

, by definition. Let us consider

the image tDet
−1(xi) of an element xi. It is equal to t−1

i

∏
j 6=i

t
〈pj ,e〉
j

∏
j 6=i

x
〈pj ,e〉
j . Thus, we get

tDet
−1 = t−1

i

∏
j 6=i

t
〈pj ,e〉
j De =

m∏
j=1

t
〈pj ,e〉
j De = χe(t)De.

Using this fact we obtain

tD1t
−1 = χ(−1,0)(t)δ + µdχ

(d,−1)(t)∂d

tD2t
−1 = χ(0,−1)(t)∂0

Since χ(−1,0) 6= χ(d,−1) we can conjugate an additive action with µd 6= 0 to the additive
action with µd = 1. �

From the last lemma it follows that there are two classes of additive actions. The first
one (µd = 0) is a normalized additive action:

x1→ x1 + s1

m∏
j=3

x
αj1

j

x2→x2 + s2

m∏
j=3

x
αj2

j .
(5)

The second is a non-normalized additive action:

x1→x1 + s1

m∏
j=3

x
αj1

j

x2→x2 + (s2 +
sd1
d!

)
m∏
j=3

x
αj2

j +
d∑

k=1

sd−k
1

k!
xk1

m∏
j=3

x
αj2−kαj1

j .
(6)
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Lemma 8. Actions (5) and (6) are not isomorphic.

Proof. Let us consider the homogeneous component of K[X] containing x2:

C = 〈x2〉 ⊕ span{xk1
m∏
j=3

x
αj2−kαj1

j : 0 ≤ k ≤ d}.

We consider the space V = {s1D1 + s2D2 : s1, s2 ∈ K} and its subspace

AnnV f = {v ∈ V : vf = 0}, f ∈ C.

Let f = λx2 +
d∑

k=0

λkx
k
1

m∏
j=3

x
αj2−kαj1

j be an arbitrary non-zero element of C.

In the case of normalized action (s1D1 + s2D2)f is equal to

s2λ

m∏
j=3

x
αj2

j + s1

d∑
k=1

λkkx
k−1
1

m∏
j=3

x
αj2−(k−1)αj1

j .

Elements of AnnV f are defined by the following equations:

λs2 + λ1s1 = 0
λks1 = 0, 2 ≤ k ≤ d

(7)

The collection of subspaces AnnV f , where f ∈ C \ {0}, contains a family of
lines {s1D1 + s2D2 : λ1s1 + λs2 = 0}, (λ : λ1) ∈ P2.

In the case of non-normalized action (s1D1 + s2D2)f is equal to

s2λ
m∏
j=3

x
αj2

j + s1λx
d
1

m∏
j=3

x
αj2−dαj1

j + s1

d∑
k=1

λkkx
k−1
1

m∏
j=3

x
αj2−(k−1)αj1

j .

Elements of AnnV f are defined by the following equations:

λs2 + λ1s1 = 0
λks1 = 0, 2 ≤ k ≤ d
λs1 = 0

(8)

The subspace AnnV f for f ∈ C \ {0} can be either KD2 or 0.
Hence, actions (5) and (6) are not isomorphic. �

Remark 1. The idea of this proof is taken from the proof [2, Theorem 1].

In the case of a wide fan, Theorem 4 follows from Lemmas 4 and 5. In the case of a
non-wide fan, we obtain the assertion from Lemmas 5-8. Theorem 4 is proved. �

7. On uniqueness of additive actions on complete toric varieties

Let X be a complete toric variety of dimension n admitting an additive action, and Σ
be the fan of the variety X. Denote the primitive vectors on the rays ρi of the fan Σ by pi,
where 1 ≤ i ≤ m. From Proposition 2 it follows that we can order pi in such a way that
the first n vectors form a basis of the lattice N and the remaining vectors pj (n < j ≤ m)
are equal to

∑n
i=1−αjipi for some non-negative integers αji.

Fix a vector u ∈ Reg(S) that satisfies assertion (3) of Proposition 3. Hereafter, we
write S+ instead of S+

u . Denote the set S+ ∪ U by R+. From Proposition 3, it follows

that the set R+ lies in the set
n⋃
i=1

Ri. The one-parameter subgroups of roots from R+
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generate the maximal unipotent subgroup U in the group Aut(X) and dimU = |R+|,
see [10, Proposition 4.3]. Denote the set R+ ∩Ri by R+

i .
Let us denote a locally nilpotent derivation that corresponds to the Demazure root e ∈ R

by ∂e.

Theorem 5. Let X be a complete toric variety admitting an additive action. The following
conditions are equivalent:

(1) the set Ri is equal to {−p∗i } for every 1 ≤ i ≤ n;
(2) the set R+ is equal to {−p∗1, . . . ,−p∗n};
(3) the preorder ≤ on the set of rays {ρ1, . . . , ρn} is trivial;
(4) any additive action on variety X is isomorphic to the normalized additive action.

Proof. Equivalence (1)⇔ (2) follows from Proposition 3.

Lemma 9. The vector −p∗i1 + p∗i2 is a Demazure root if and only if ρi1 ≥ ρi2.

Proof. The element −p∗i1 + p∗i2 is a Demazure root if and only if the element satisfies inequal-
ities 〈pj,−p∗i1 + p∗i2〉 ≥ 0 for all n < j ≤ m since 〈pi,−p∗i1 + p∗i2〉 ≥ 0 for i ∈ {1, . . . , n} \ {i1}
and 〈pi1 ,−p∗i1 + p∗i2〉 = −1. The properties

〈pj,−p∗i1 + p∗i2〉 = 〈−
n∑
i=1

αjipi,−p∗i1 + p∗i2〉 = αji1 − αji2 ≥ 0,

for n < j ≤ m are equivalent to the properties αji1 ≥ αji2 for all n < j ≤ m, or to the
property ρi1 ≥ ρi2 . �

Let us prove implication (1)⇒ (3). Suppose the converse that ρi1 ≥ ρi2 for some i1 6= i2.
By Lemma 9, the vector −p∗i1 + p∗i2 is a Demazure root and it lies in Ri1 , a contradiction.

Lemma 10. Let e be a Demazure root from the set Ri and e 6= −p∗i . Then there exists a
Demazure root e′ ∈ Ri with e′ = −p∗i + p∗r for some 1 ≤ r ≤ n. Moreover, if 〈pr, e〉 > 0 for
some r, then the vector −p∗i + p∗r is a Demazure root.

Proof. Let e = −p∗i +
n∑

l=1,l 6=i
εlp
∗
l , where εl = 〈pl, e〉 ≥ 0. There exists an index r 6= i such

that εr 6= 0. Let us define a vector e′ = −p∗i + p∗r. We have 〈pj, e′〉 ≥ 〈pj, e〉 ≥ 0 for all
n < j ≤ m. Thus, the element e′ is a Demazure root.

�

Let us prove implication (3) ⇒ (1). Let us assume the converse. By Lemma 10, if the
set Ri is not equal to {−p∗i }, then there exists r such that −p∗i + p∗r ∈ Ri. By Lemma 9,
we get ρi ≥ ρr, a contradiction.

Now we prove implication (2) ⇒ (4). A maximal unipotent group U has dimension n.
So, the subgroup U is the only candidate for Gn

a up to conjugation.

Let us prove implication (4)⇒ (3). Without loss of generality, let us assume that there
exist rays ρ1, ρ2 such that ρ2 ≤ ρ1, where ρ1 is a maximal ray. By Lemma 9, the vector −p∗1+
p∗2 is a Demazure root. Let us consider the number d = max{ε : −p∗1 + εp∗2 ∈ R1} and take
two ordered tuples of derivations:

D(1) = (D
(1)
1 , . . . , D

(1)
n ) = (∂−p∗1 , ∂−p∗2 , ∂−p∗3 , . . . , ∂−p∗n);

D(2) = (D
(2)
1 , . . . , D

(2)
n ) = (∂−p∗1 , ∂−p∗2 + ∂−p∗1+dp∗2

, ∂−p∗3 . . . , ∂−p∗n).
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Our goal is to show that these tuples correspond to non-isomorphic additive actions.
To prove this fact, we find some invariant varieties SV (q)(C), q = 1, 2, for the above men-
tioned additive actions and prove that these invariants are non-isomorphic. The vari-
ety SV (q)(C), q = 1, 2, is a subset of Cox ring R(X) connected with an additive action.

Firstly, we prove that the tuples D(1) and D(2) correspond to additive actions. The deriva-
tion ∂−p∗2 +∂−p∗1+dp∗2

is a sum of two locally nilpotent derivations of degree zero with respect

to Cl(X)-grading. Therefore, any derivation in the tuples D(q), q = 1, 2, is a derivation of
degree zero with respect to the Cl(X)-grading.

Lemma 11. Derivations in the tuples D(1) and D(2) are locally nilpotent.

Proof. For any 1 ≤ i ≤ n, the derivation ∂−p∗i is locally nilpotent since it corresponds to a
Demazure root. We should check that the derivation ∂−p∗2 + ∂−p∗1+dp∗2

is locally nilpotent. It
easily follows from the following:

(∂−p∗2 + ∂−p∗1+dp∗2
)(x1) ∈ K[x2, xn+1, xn+2, . . . , xm];

(∂−p∗2 + ∂−p∗1+dp∗2
)(x2) ∈ K[xn+1, xn+2, . . . , xm];

(∂−p∗2 + ∂−p∗1+dp∗2
)(xj) = 0, for 2 < j ≤ m.

�

Lemma 12. Derivations in the tuple D(q), q = 1, 2, pairwise commute.

Proof. From Theorem 1 we know that derivations in the tuple corresponding to the
normalized additive action commute, as a result [∂−p∗i , ∂−p∗j ] = 0. It remains to check

that [∂−p∗2 + ∂−p∗1+dp∗2
, ∂−p∗i ] = [∂−p∗1+dp∗2

, ∂−p∗i ] = 0 if i 6= 2. This can be checked directly. �

By these lemmas, we get that the ordered tuples D(q), q = 1, 2, correspond to actions a(q)

on the variety X by the group Gn
a .

Definition 7. Let us call an ordered tuple of locally nilpotent derivations D = (D1, . . . , Dn)
triangular if Dixi 6= 0 and Dlxi = 0 if i > l.

It is easy to check that the tuples of derivations D(1) and D(2) are triangular.

Lemma 13. The Gn
a-action corresponding to a triangular tuple of commuting locally nilpo-

tent derivations has an open orbit on the variety X. Thus, a triangular ordered tuple of
locally nilpotent derivations defines an additive action Gn

a ×X → X.

Proof. We prove that there exists a point p = (x1, . . . , xm) ∈ X̂ ⊂ X such that

dim(Ga ×HX)p = m. The Jacobian of the orbit morphism ϕp : Ga × HX → X̂ at the

identity of the group Ga × HX is equal to
n∏
i=1

Dixi
m∏

j=n+1

xj. There exists a point p ∈ X̂,

where the product
n∏
i=1

Dixi
m∏

j=n+1

xj is not zero. The dimension of the tangent space of the

orbit (Gn
a × HX)p at the point p is equal to dimX = m. Thus, the orbit (Gn

a × HX)p on

the variety X is open. Consequently, after factorization πX : X̂ → X the orbit Gn
aπX(p) is

open on the variety X as well. �

Therefore, the action a(q), q = 1, 2, is an additive action.

Now we prove that actions corresponding to the tuples D(1) and D(2) are non-isomorphic.
Let us consider an equivalence relation on the set of rays Σ(1) determined by

ρi1 ∼ ρi2 ⇐⇒ deg(xi1) = deg(xi2) in Cl(X).
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This partitions Σ(1) into disjoint subsets
r⊔
i=1

Σ(1)i, where each subset Σ(1)i corresponds

to a set of variables of the same degree ωi. Let Ci = {f ∈ R(X) : deg(f) = ωi}
be the homogeneous component. Let us consider the vector space Ci as an algebraic

variety Adim Ci . We take the algebraic variety C =
r⋃
i=1

Ci. We consider two vec-

tor spaces V (1) = {
n∑
i=1

siD
(1)
i : si ∈ K} and V (2) = {

n∑
i=1

siD
(2)
i : si ∈ K}. For every ele-

ment f ∈ C, we regard the subspace AnnV f = {v ∈ V : vf = 0} of a space V of derivations.
Let us consider the following sets:

SV (Ci) = {f ∈ Ci : dim AnnV f ≥ dimV − 1},

SV (C) = {f ∈ C : dim AnnV f ≥ dimV − 1} =
r⋃
i=1

SV (Ci)

Lemma 14. The subset SV (Ci) is a closed subvariety of the variety Ci.

Proof. We have the system of linear equations vf = 0, where v ∈ V and f ∈ Ci is a
certain fixed element. We choose some bases in V and in Ci. In these terms, the condition
dim Annf V ≥ dimV − 1 means that the matrix of system of linear equations vf = 0 has
rank less than 2 or, equivalently, every 2 × 2 submatrix is singular. Thus, SV (Ci) is the
subvariety of Ci defined by equations det(M) = 0, where M runs over all 2× 2 submatrices
of the matrix of linear equation. �

By [11, Theorem 3.2.6] T -invariant divisors D1, . . . , Dm on the variery X as well as the
elements [D1], . . . , [Dm] ∈ Cl(X) are canonical. Therefore, the degrees of the variables
are canonical, since the degrees are equal to [D1], . . . , [Dm]. As a result if additive ac-
tions a(1), a(2) are isomorphic, then the varieties SV (1)(C), SV (2)(C) should be isomorphic.
We are going to prove that varieties SV (1)(C) and SV (2)(C) are not isomorphic.

Without loss of generality, we suppose x1 ∈ C1.

Lemma 15. For i 6= 1, we have SV (1)(Ci) = SV (2)(Ci).

Proof. We prove that the derivation ∂−p∗1+dp∗2
is zero on the vector space Ci, i > 1. As-

sume the converse. We know that ∂−p∗1+dp∗2
= f ∂

∂x1
, where f ∈ R(X). It follows that the

derivation ∂
∂x1

is not zero on the vector space Ci. There exists a certain variable xl ∈ Ci,
l 6= 1. By Corollary 1, we get Ci = {λxl +

∑
e∈Rl

λe∂e(xl) : λ, λe ∈ K}. Since l 6= 1 we ob-

tain ∂
∂x1

(xl) = 0. Also, from the definition of Demazure root we get ∂e(xl) = x
〈p1,e〉
1 g,

g ∈ K[x2, . . . , xm]. Since the ray ρ1 is maximal, by Lemma 9 no vector −p∗l + p∗1 is a De-
mazure root. Then by Lemma 10 the pairing 〈p1, e〉 is equal to zero and ∂

∂x1
(∂e(xl)) = 0, a

contradiction.
As the derivation ∂−p∗1+dp∗2

is zero, the tuples of derivations D(1) and D(2) are equal. �

By Corollary 1, for every element f ∈ C1, we can consider a representa-
tion f = λx1 +

∑
e∈R1

λe∂e(x1) in the basis x1, ∂e(x1), where e ∈ R1.

Since ∂−p∗i =
∏m

l=n+1 x
αil
l

∂
∂xi
, 1 ≤ i ≤ n, and ∂−p∗1+dp∗2

= xd2
∏m

l=n+1 x
α1l−dα2l
l

∂
∂x1

, the image

D
(q)
i (λx1 +

∑
e∈R1

λe∂e(x1)), 1 ≤ i ≤ n and q = 1, 2, belongs to spane∈R1
〈∂e(x1)〉. Let us
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introduce the coefficients υ
(q)
e,i :

D
(q)
i

(
λx1 +

∑
e∈R1

λe∂e(x1)

)
=
∑
e∈R1

υ
(q)
e,i ∂e(x1).

Lemma 16. The algebraic variety SV (2)(C1) is the proper closed subset of the vari-
ety SV (1)(C1).

Proof. We prove that SV (2)(C1) ⊂ {λ = 0}. For this, we choose 2× 2 subma-

trix L =

(
υ

(2)
−p∗1,1

υ
(2)
−p∗1,2

υ
(2)
−p∗1+dp∗2,1

υ
(2)
−p∗1+dp∗2,2

)
. We have

∂−p∗1(λx1 +
∑
e∈R1

λe∂e(x1)) = λ∂−p∗1(x1),

(∂−p∗2 + ∂−p∗1+dp∗2
)

(
λx1 +

∑
e∈R1

λe∂e(x1)

)
= λ∂−p∗1+dp∗2

(x1) +
∑
e∈R1

e+p∗2∈R1

(〈p2, e〉+ 1)λe+p∗2∂e(x1).

Since d is maximal with −p∗2 + dp∗1 being a Demazure root, we have υ
(2)
−p∗1+dp∗2,2

= λ.

The submatrix L is equal to

(
λ λ−p∗1+p∗2
0 λ

)
. Thus, SV (2)(C1) ⊂ {λ = 0}. We know

that spane∈R1
∂e(x1) ⊂ ker ∂−p∗2+dp∗1

. Therefore, if λ = 0 then the systems of linear equations

are the same for tuples D(1) and D(2). This follows that

SV (2)(C1) = SV (2)(C1) ∩ {λ = 0} = SV (1)(C1) ∩ {λ = 0}.

Let us prove that SV (1)(C1) 6⊂ {λ = 0}. Since
∑
siD

(1)
i (x1) = s1∂−p∗1(x1) the point λ = 1

and all λe = 0 belongs to the variety SV (1)(C1). �

By Lemma 16, the varieties SV (1)(C) and SV (2)(C) are not isomorphic. This completes
the proof of impication (1)⇒ (3). So, Theorem 5 is proved.

�

8. Corollaries and examples

In this section, we preserve notation of the previous section. Here, we describe some
examples illustrating Theorem 4.

Example 1. Let us consider the surface P1 × P1. Its fan is wide, and there is only one
additive action up to isomorphism.

-

6

�

?

p1

p2

p3

p4

R1 = {(−1, 0)}
R2 = {(0,−1)}
R3 = {(1, 0)}
R4 = {(0, 1)}

R+ = {(−1, 0), (0,−1)}

Normalized action:
x1→x1 + s1x3

x2→x2 + s2x4

x3→ x3

x4→ x4

(s1, s2) ∈ G2
a

Example 2. Let us consider the surface corresponding to the following fan with
p3 = −p1 − 2p2, p4 = −2p1 − p2. Its fan is wide, and there is only one additive action up to
isomorphism.



16 SERGEY DZHUNUSOV

-

6

�
�
�
�
�
�
�
��

�
���

���
��

p1

p2

p3

p4

R1 = {(−1, 0)}
R2 = {(0,−1)}

R3 = ∅
R4 = ∅

R+ = {(−1, 0), (0,−1)}

Normalized action:
x1→x1 + s1x3x

2
4

x2→x2 + s2x
2
3x4

x3→ x3

x4→ x4

(s1, s2) ∈ G2
a

Example 3. Let us consider the projective plane P2. It corresponds to the following fan
with p3 = −p1 − p2. This fan is not wide. Therefore, there are two additive actions up to
isomorphism.

-

6

�
�
�

�	

p1

p2

p3

R1 = {(−1, 0), (−1, 1)}
R2 = {(0,−1), (1,−1)}
R3 = {(1, 0), (0, 1)}

R+ = {(−1, 0), (0,−1), (1,−1)}

Normalized action:
x1→ x1 + s1x3

x2→ x2 + s2x3

x3→ x3

(s1, s2) ∈ G2
a

Non-normalized action:
x1→ x1 + s1x3

x2→x2 +
2s2+s21

2
x3 + s1x1

x3→ x3

(s1, s2) ∈ G2
a

Example 4. Let us consider Hirzebruch surface F1. It corresponds to the following fan with
p3 = −p1 − p2, p4 = −p2. This fan is not wide. Therefore, there are two additive actions
up to isomorphism.

-

6

?

�
�
�

�	

p1

p2

p4

p3

R1 = {(−1, 0)}
R2 = {(0,−1), (1,−1)}

R3 = {(1, 0)}
R4 = ∅

R+ = {(−1, 0), (0,−1), (1,−1)}

Normalized action:
x1→ x1 + s1x3

x2→x2 + s2x3x4

x3→ x3

x4→ x4

(s1, s2) ∈ G2
a

Non-normalized action:

x1→ x1 + s1x3

x2→x2 +
2s2+s21

2
x3x4 + s1x1x4

x3→ x3

x4→ x4

(s1, s2) ∈ G2
a

For a geometric realization of these two actions, see [20, Propostion 5.5].

The next corollary follows from Theorem 5.

Corollary 4. Let X be a complete toric variety admitting an additive action. The following
conditions are equivalent:
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(1) the dimension of a maximal unipotent subgroup of the automorphism group Aut(X)
is equal to the dimension of the variety X;

(2) any additive action on X is isomorphic to the normalized additive action.

Proof. The dimension of a maximal unipotent subgroup is equal to the size of the set R+.
�

Example 5. Let us consider the set of vectors p1, . . . , p5 in N = Z2 such that the vectors
p1, p2 form a basis of N , p3 = −p1 + p2, p4 = −2p1 − p2 and p5 = −p1 − p2. Let ρ1, . . . , ρ5 ⊂
NQ be the rays generated by the vectors p1, . . . , p5, respectively. Let us consider a complete
toric variety X with the fan Σ such that Σ(1) = {ρ1, . . . , ρ5}. It can be computed directly
that R1 = {−p∗1,−p∗1 + p∗2} and Ri = ∅, i ≥ 2. Therefore, a maximal unipotent subgroup
of the group Aut(X) has dimension 2, but there is no additive action on the variety X by
Lemma 1.

Now let us explain the connection between Theorem 4 and Theorem 5.

Corollary 5. Let X be a complete toric variety admitting an additive action. The following
conditions are equivalent:

(1) any additive action is isomorphic to the normalized additive action;
(2) the image under the projection along the coordinate

plane span{p1, . . . , p̂l1 , . . . , p̂l2 , . . . , pn} of the system of rays Σ(1) to the plane
spanned vectors pl1 , pl2 determines a wide fan for every 1 ≤ l1 6= l2 ≤ n.

Proof. The image of the projection of the fan to the plane spanned by vectors pl1 , pl2 is
wide if and only if the rays ρl1 and ρl2 are incomparable. Thus, the corollary stems from
equivalence (3)⇔ (4) of Theorem 5. �

Corollary 6. Let X be a complete toric variety admitting an additive action. If we
have m = n+1 or, equivalently, rank Cl(X) = 1, then there are at least two non-isomorphic
additive actions.

Proof. By definition, the preorder on the rays ρ1, . . . , ρn is the same as the natural order on
numbers αn+1,1, . . . , αn+1,n. Every two elements are comparable. Therefore, the preorder is
not trivial. �

Corollary 6 covers the case of weighted projective spaces. By [6, Proposition 2], a weighted
projective space P(a0, . . . , an), a0 ≤ a1 ≤ . . . ≤ an admits an additive action if and only
if a0 = 1. By this corollary, on a weighted projective space P(1, a1, . . . , an) there are at
least two non-isomorphic additive actions.

The final example shows that in the case m = n+ 2 an additive action can be unique.

Example 6. Let us consider the set of vectors p1, . . . , pn+2 in N = Zn such that the vectors
p1, . . . , pn form a basis of N , pn+1 = −

∑n
i=1 ipi and pn+2 = −

∑n
i=1(n− i+ 1)pi. Let us

consider the rays ρ1, . . . , ρn+2 ⊂ NQ generated by p1, . . . , pn+2. We consider a complete
toric variety X with a fan Σ such that Σ(1) = {ρ1, . . . , ρn+2}. By Theorem 5 an additive
action on such a variety is unique.
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