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Abstract

We obtain estimates on the Morse index and nullity of bipolar surfaces to Otsuki tori Õp/q for p/q

su�ciently close to
√
2/2.

1 Introduction

A minimal surface is a critical point of the area functional and the index of a minimal surface is the Morse
index of the corresponding critical point. Despite the naturalness and importance of this notion, the index is
known only for a few examples of minimal surfaces. Unfortunately, there is no universal method for computing
the index. In fact, for each case one should invent a new approach.

In the present paper we consider minimal surfaces in S4 called bipolar surfaces to Otsuki tori. Otsuki tori
are minimal surfaces in S3. They �rst appeared in [ �Ots70] but the original de�nition was implicit and very
complicated. Later the de�nition was simpli�ed in works [HLJ71] and [Pen13]. The second work contains also
the study of extremal spectral properties of Otsuki tori.

Bipolar surfaces to Otsuki tori are obtained by applying the construction from [LJ70, �11] to Otsuki tori.
Generally, this construction gives a minimal surface in S5 but in the case of Otsuki tori this surface always lies
in some equatorial sphere S4 ⊂ S5. The study of extremal spectral properties of bipolar surfaces to Otsuki tori
was done in [Kar14]. Moreover, this work contains a convenient parametrization of bipolar surfaces to Otsuki
tori (see �2.2 and also Remark 1).

Our main result is Theorem 1 where we obtain estimates on the index and nullity of a bipolar surface to
Otsuki tori under the condition that this surface is �close enough to the Cli�ord torus� (these words are clari�ed
in �2.2). Unfortunately, our method allows neither compute the index exactly nor at least give an example of
surface for which our estimates holds. However we hope that the method provides some intuition and can be
easily adopted for numerical computations. For example, we are able to compute numerically the index of Õ2/3,
which is one of the surfaces of the family. We suppose that �nding the exact value of index is a very di�cult
problem. See Remark 3 for the discussion of our main result.

The plan of the proof of Theorem 1 is the following. First we compute the Jacobi stability operator in
appropriate local coordinates. Then, using the separation of variables, we reduce the spectral problem for
Jacobi operator to the spectral problem for some periodic matrix Sturm-Liouville problem. Finally, we attack
this problem using methods of the classical work [Edw64]. Thus our approach is a direct generalization of
one used in [Pen12, Pen13, Kar14]. Note however that in our case the situation is complicated by the fact
that bipolar surfaces to Otsuki tori are of codimension 2 in S4. This leads to multidimensional (matrix)
Sturm-Liouville problem, which is much more complicated than the one-dimensional (scalar) one appeared in
the works cited above. For an alternative approach to the codimension 2 case based on complex geometry
see [KW18, Med21, Med22].

2 Preliminaries

2.1 Index and nullity of a minimal submanifold

In this section we �x our notation and recall the de�nitions of index and nullity of a minimal submanifold.
Let E be a vector bundle equipped with a Riemannian metric. We denote by Γ(E) the set of all global

sections of E. If F is a subbundle of E with the induced metric and s ∈ Γ(E), then sF ∈ Γ(F ) denotes the
orthogonal projection of s on F . For a smooth manifold M we denote by TM the tangent bundle of M .

*The author is partially supported by the Theoretical Physics and Mathematics Advancement Foundation �BASIS�.
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Now let Φ: M ↬ M̄ be an immersion of a p-dimensional manifold M in an n-dimensional Riemannian
manifold (M̄, ḡ). Denote by NM the normal bundle to M in M̄ . Let R̄(·, ·)· denote the Riemann curvature
tensor on M̄ . For each V ∈ Γ(NM) de�ne R(V ) ∈ Γ(NM) as the trace of the bilinear form

X,Y 7→ (R̄(X,V )Y )NM .

Recall that for each V ∈ Γ(NM) the Weignharten operator

AV : Γ(TM) → Γ(TM), AV (X) = −(∇TM̄
X V )TM

is de�ned. Let SM ⊂ T ∗M ⊗ TM be the bundle of symmetric linear operators on TM . Consider the operator
A : Γ(NM) → Γ(SM), V 7→ AV . Let A∗ : Γ(SM) → Γ(NM) be the adjoint operator and Ã = A∗A.

Finally, for each V ∈ Γ(NM) consider the operator

∇NMV : Γ(TM) → Γ(NM), X 7→ ∇NM
X V

and the bilinear form

X,Y 7→ −(∇T∗M⊗NM
X (∇NMV ))(Y ) = ∇NM

∇TM
X Y V −∇NM

X (∇NM
Y V )

with values in Γ(NM). Denote the trace of this bilinear form by ∆NMV (this is so-called Laplace-Beltrami
operator in normal bundle). If e1, . . . , ep is a local orthonormal frame in Γ(TM), then

∆NMV =

p∑
i=1

∇NM
∇TM

ei
ei
V −∇NM

ei (∇NM
ei V ). (1)

Now suppose that the immersion Φ is minimal and g = Φ∗ḡ is the induced metric on M . Let Φt be a
variation of Φ and V := ∂

∂t

∣∣
t=0

Φt ∈ Γ(Φ∗TM̄). Then since Φ is minimal, the �rst variation of the volume

functional vanishes: d
dt

∣∣
t=0

Vol(M,Φ∗
t ḡ) = 0. The second variation of this functional has the form

d2

dt2

∣∣∣∣
t=0

Vol(M,Φ∗
t ḡ) =

∫
M

⟨∆NM (V NM ) +R(V NM )− Ã(V NM ), V NM ⟩g dvg,

where dvg stands for the measure associated with the metric g (see [Sim68, Theorems 3.2.1�3.2.2]).

De�nition 1. The operator J : Γ(NM) → Γ(NM), de�ned by the formula

J(V ) = ∆NMV +R(V )− Ã(V ),

is called the Jacobi (stability) operator on M .

It is well-known that Jacobi operator is an elliptic di�erential operator and its spectrum has the form

λ1 ⩽ λ2 ⩽ · · · ⩽ λn ⩽ · · · ↗ +∞,

where each λi is listed as many times as its multiplicity. In particular, the number of indices i with λi < 0 is
�nite.

De�nition 2. The number of negative eigenvalues of J counted with multiplicity is called the index of M and
is denoted by indM . The multiplicity of the zero eigenvalue of J is called the nullity of M and is denoted by
nullM .

2.2 Bipolar surfaces to Otsuki tori

In this section we shortly describe the construction of bipolar surfaces to Otsuki tori. This construction is based
on the Hsiang-Lawson Reduction Theorem [HLJ71, Theorem 2] and is similar to the construction of ordinary
Otsuki tori from [Pen13]. Here we give only the most necessary de�nitions. For more detailed exposition of the
construction and its motivation see [Kar14, �2.4]. See also Remark 1.

Let S2 be the standard unit sphere in R3 with spherical coordinates (φ, θ) so that

S2 = {(cosφ sin θ, cosφ cos θ, sinφ) ∈ R3 | −π
2
⩽ φ ⩽

π

2
, 0 ⩽ θ < 2π},
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Denote N = (0, 0, 1), S = (0, 0,−1) ∈ S2. Consider the metric

g̃1 = E dφ2 +Gdθ2, E = 4π2 cos2 φ, G = 4π2 cos4 φ

on S2 \ {N,S}. Let
γ : [0, t0] → S2, γ(t) = (φ(t), θ(t))

be a closed geodesic on (S2 \{N,S}, g̃1) parametrized by arc length (so that t0 is the full length of the geodesic).
Here we consider θ(t) modulo 2π.

Proposition 2.2.1. The surface in R5 given parametrically by

x1(α, t) = cosα cosφ(t) sin θ(t),

x2(α, t) = sinα cosφ(t) sin θ(t),

x3(α, t) = cosα cosφ(t) cos θ(t),

x4(α, t) = sinα cosφ(t) cos θ(t),

x5(α, t) = sinφ(t),

α ∈ [0, 2π), t ∈ [0, t0), (2)

is a minimal torus in S4 = {(x1, x2, x3, x4, x5) ∈ R5 |
∑5

i=1(x
i)2 = 1}.

The surface given by (2) is a bipolar surface to Otsuki tori.
Now let us describe closed geodesics on (S2 \ {N,S}, g̃1). To this end, for each b ∈ (−π

2 ,
π
2 ) consider the

geodesic γb(t) = (φ(t), θ(t)) de�ned by the following initial conditions:

φ(0) = b, φ̇(0) = 0, θ(0) = 0, θ̇(0) > 0. (3)

We want to �nd out for which values of b this geodesic closes. Note that any closed geodesic on (S2 \{N,S}, g̃1)
can be parametrized in such a way that conditions (3) hold for some b. Indeed, it su�ces to take b equal to the
lowest value of the coordinate φ on the geodesic. Thus in such a way we describe all closed geodesics. Moreover,
since the metric g̃1 is invariant under the transformation φ 7→ −φ, we may assume that b ⩽ 0.

The equation of geodesics for θ̈ reads

θ̈ +
1

G

∂G

∂φ
φ̇θ̇ = 0 ⇔ d

dt
(Gθ̇) = 0.

Hence, θ̇ = c
G for some constant c. Since the geodesic is naturally parametrized, we get

Eφ̇2 +Gθ̇2 = 1 ⇔ φ̇2 =
G− c2

EG
.

Substituting t = 0, we obtain c =
√
G|φ=b = ±2π cos2 b, and since θ̇(0) > 0, we have c > 0. Hence,

θ̇ =
cos2 b

2π cos4 φ
(4)

and

φ̇2 =
cos4 φ− cos4 b

4π2 cos6 φ
. (5)

From the last equation it follows that φ̇ vanishes exactly when φ = ±b and that the geodesic γb lies in the
spherical segment b ⩽ φ ⩽ −b.

Note that there is a special case b = 0. In this case we have φ(t) ≡ 0, θ(t) = t
2π and the surface (2) is just

the Cli�ord torus in equatorial S3 ⊂ S5. Further we assume that b ̸= 0.

Proposition 2.2.2. 1) The function φ(t) is T -antiperiodic where

T = T (b) :=

∫ −b

b

2π cos3 φdφ√
cos4 φ− cos4 b

< +∞.

2) The function φ(t) is odd w.r.t. the transformation t 7→ T − t.
3) The function θ(t) satis�es θ(t+ T ) ≡ θ(t) + θ(T ).

3



Proof. The number T is nothing but the di�erence between the value of t, corresponding to φ = b, and the
nearest value of t, corresponding to φ = −b. In [Kar14, Corollary 4] it is shown that T (b) <

√
2π2 < +∞.

A solution of the ODE (5) has two branches. The functions φ(t) and −φ(t + T ) correspond to the same
branch of the same solution of (5) (this solution satis�es the initial condition φ(0) = b). Thus part 1) follows.
Part 2) can be proved similarly and part 3) follows easily from part 1) and (4).

Finally, consider the issue of closeness of the geodesic γb. It follows from Proposition 2.2.2 that the geodesic
γb is closed exactly when the number Ξ(b) := θ(T (b)) is a rational multiple of π. From equations (4),(5) we
obtain

Ξ(b) = cos2 b

∫ −b

b

dφ

cosφ
√

cos4 φ− cos4 b
.

The function Ξ(b) (as well as T (b)) is not expressible in terms of elementary functions. However one can prove
the following assertions (see [Kar14, Proposition 5]):

(i) Ξ(b) is continuous on (−π
2 , 0) and strictly increasing;

(ii) lim
b→0−

Ξ(b) =
√
2
2 π, lim

b→(−π
2 )+

Ξ(b) = π
2 .

It follows that closed geodesics on (S2 \ {N,S}, g̃1) (and so the bipolar surfaces to Otsuki tori) are in 1-1
correspondence with rational numbers p

q such that

p, q > 0, (p, q) = 1, and
1

2
<
p

q
<

√
2

2
.

We denote the bipolar surface to the Otsuki torus corresponding to the number p
q by Õp/q. The parameter b of

the corresponding closed geodesic γb satis�es Ξ(b) =
p
qπ and the full length of this geodesic equals t0 = 2qT (b).

Remark 1. The above construction is not the standard de�nition of bipolar surfaces to Otsuki tori. According
to the standard de�nition, the surface Õp/q is obtained as the bipolar surface to some minimal torus in S3
called Otsuki torus and denoted by Op/q, see [Kar14, �2.2-2.3]. For details on bipolar surfaces and Otsuki tori
see [LJ70, �11] and [Pen13] respectively.

The following proposition contains some important properties of the functions φ(t), θ(t) and immersion (2).

Proposition 2.2.3. 1) The function φ(t) has exactly 2q zeros on [0, t0), located at the points 2d+1
2 T where

d = 0, . . . , 2q−1. The function φ̇(t) has exactly 2q zeros on [0, t0), located at the points dT where d = 0, . . . , 2q−1.
2) The functions cos θ(t) and sin θ(t) each have exactly 2p zeros on [0, t0).
3) For even q immersion (2) is invariant under the transformation

(α, t) 7→
(
α+ π, t+

t0
2

)
.

The immersion (2) is not invariant under any other transformations.

Proof. Part 1) follows from Proposition 2.2.2 and equation (5). Parts 2) and 3) are proved in [Kar14, Proposi-
tion 4].

The aim of this paper is to obtain estimates on the index and nullity of the surfaces Õp/q. A rough upper
bound can be obtained as follows. It follows from [EM08, Theorem 1.1] and [Kar21, Proposition 1.6] that

ind Õp/q ⩽ 5 indS Õp/q + 2,

where indS Õp/q denotes so-called spectral index of Õp/q, i.e. the number of eigenvalues of the Laplace-Beltrami

operator on Õp/q less than 2. On the other hand, in [Kar14] it is shown that

indS Õp/q =

{
2q + 4p− 2, q is odd;

q + 2p− 2, q is even.

It follows immediately that

ind Õp/q ⩽

{
10q + 20p− 8, q is odd;

5q + 10p− 8, q is even.
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Our main result reads as that if p
q is su�ciently close to

√
2
2 (i.e., speaking informally, if Õp/q is �close to the

Cli�ord torus�), then one can improve the rough upper bound mentioned above and also obtain a lower bound.

Theorem 1. There exists δ > 0 such that if
√
2
2 − p

q < δ, then for odd q the inequalities

6q + 8p− 3 ⩽ ind Õp/q ⩽ 10q + 4p− 5

hold, and for even q the inequalities

3q + 4p− 3 ⩽ ind Õp/q ⩽ 5q + 2p− 5

hold. Moreover, for such p
q the inequalities

9 ⩽ null Õp/q ⩽ 13

hold independently of the parity of q.

2.3 Sturm-Liouville equation

In this section we recall certain properties of Sturm-Liouville equation, which are used in the sequel.

Theorem 2 (Sturm Oscillation Theorem for periodic Sturm-Liouville equation, [CL95, Theorem 3.1 in Chap-
ter 8]). Consider a periodic Sturm-Liouville problem

−(p(t)h′(t))′ + q(t)h(t) = λh(t), (6)

where
p(t) > 0, p(t+ T ) ≡ p(t), q(t+ T ) ≡ q(t).

Denote by λi and hi(t) (where i = 0, 1, 2, . . .) eigenvalues and eigenfunctions of problem (6) with periodic
boundary conditions

h(t+ T ) ≡ h(t).

Denote by λ̃i and h̃i(t) (where i = 1, 2, . . .) eigenvalues and eigenfunctions of problem (6) with antiperiodic
boundary conditions

h(t+ T ) ≡ −h(t).

Then the following inequalities hold:

λ0 < λ̃1 ⩽ λ̃2 < λ1 ⩽ λ2 < λ̃3 ⩽ λ̃4 < λ3 ⩽ λ4 < . . . .

For λ = λ0 there exists a unique (up to multiplication by a non-zero constant) eigenfunction h0(t). If λ2i+1 <
λ2i+2 for some i ⩾ 0, then there is a unique (up to multiplication by a non-zero constant) eigenfunction h2i+1(t)
with eigenvalue λ2i+1 of multiplicity 1 and there is a unique (up to multiplication by a non-zero constant)
eigenfunction h2i+2(t) with eigenvalue λ2i+2 of multiplicity 1. If λ2i+1 = λ2i+2, then there exist two linearly
independent eigenfunctions h2i+1(t) and h2i+2(t) with eigenvalue λ = λ2i+1 = λ2i+2 of multiplicity 2. The same
holds in cases λ̃2i+1 < λ̃2i+2 and λ̃2i+1 = λ̃2i+2.

The eigenfunction h0(t) has no zeros on [0, T ). The eigenfunctions h2i+1(t) and h2i+2(t) each have exactly
2i+ 2 zeros on [0, T ). The eigenfunctions h̃2i+1(t) and h̃2i+2(t) each have exactly 2i+ 1 zeros on [0, T ).

One more useful fact concerns the case when the coe�cients of the equation (6) are periodic with period
less than t0.

Claim 1 ([Kar14, Propositions 11 and 12]). 1) Suppose that in the conditions of Theorem 2 the coe�cients of
the equation (6) are periodic with period t0

2n for some n ∈ Z, n ⩾ 1. Then t0
2n -antiperiodic eigenfunctions of the

problem (6) are h2n(2k+1)(t) and h2n(2k+1)−1(t), where k ⩾ 0.
2) Suppose that in the conditions of Theorem 2 the coe�cients of the equation (6) are periodic with period

t0
n for some n ∈ Z, n ⩾ 2. Then t0

n -periodic eigenfunctions of the problem (6) are h0(t), h2nk−1(t) and h2nk(t),
where k ⩾ 1.
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3 Proof of the main theorem

3.1 Jacobi operator on Õp/q

In this section we compute the Jacobi stability operator J on Õp/q in local coordinates α, t.

Proposition 3.1.1. Let x ∈ Õp/q. The following vectors form an orthonormal basis of TxR5:

N =


cosα cosφ sin θ
sinα cosφ sin θ
cosα cosφ cos θ
sinα cosφ cos θ

sinφ

 ,

e1 =
1

cosφ

∂

∂α
=


− sinα sin θ
cosα sin θ
− sinα cos θ
cosα cos θ

0

 , e2 = 2π cosφ
∂

∂t
= 2π cosφ


cosα(− sinφ sin θ φ̇+ cosφ cos θ θ̇)

sinα(− sinφ sin θ φ̇+ cosφ cos θ θ̇)

cosα(− sinφ cos θ φ̇− cosφ sin θ θ̇)

sinα(− sinφ cos θ φ̇− cosφ sin θ θ̇)
cosφ φ̇

 ,

n1 =


sinα cos θ

− cosα cos θ
− sinα sin θ
cosα sin θ

0

 , n2 = 2π cosφ


− cosα(cos θ φ̇+ sin θ sinφ cosφ θ̇)

− sinα(cos θ φ̇+ sin θ sinφ cosφ θ̇)

cosα(sin θ φ̇− cos θ sinφ cosφ θ̇)

sinα(sin θ φ̇− cos θ sinφ cosφ θ̇)

cos2 φ θ̇

 .

Moreover, e1, e2 is a basis of TxÕp/q and n1, n2 is a basis of NxÕp/q.

Proof. The �rst assertion is easily seen from a direct computation. The vectors e1 and e2 lie in TxÕp/q because

they are proportional to ∂
∂α and ∂

∂t respectively. It remains to note that N is just a unit normal vector to
S4.

In the sequel, all computations are made w.r.t. the basis from Proposition 3.1.1 and the elements of Γ(NÕp/q)

are identi�ed with vector-functions: f1n1 + f2n2 ↔
(

f1
f2

)
.

Proposition 3.1.2. The matrix of the operator Ã : Γ(NÕp/q) → Γ(NÕp,q) in the basis n1, n2 is

Ã =

(
8π2 cos2 φ θ̇2 0

0 8π2 sin2 φ cos2 φ θ̇2

)
.

Proof. We have

⟨Aniej , ek⟩ = −⟨∇TÕp/q
ej ni, ek⟩ = −⟨∇R5

ej ni, ek⟩ = ⟨ni,∇R5

ej ek⟩
for all i, j, k = 1, 2. Then,

∇R5

e1 e1 =
1

cosφ
∇R5

∂
∂α
e1 =

1

cosφ


− cosα sin θ
− sinα sin θ
− cosα cos θ
− sinα cos θ

0

 ,∇R5

e2 e1 = 2π cosφ∇R5

∂
∂t
e1 = 2π cosφ


− sinα cos θ θ̇

cosα cos θ θ̇

sinα sin θ θ̇

− cosα sin θ θ̇
0

 . (7)

From this it is easy to see that the matrices of the operators An1 , An2 in the basis e1, e2 are

An1 =

(
0 −2π cosφ θ̇

−2π cosφ θ̇ 0

)
, An2 =

(
2π sinφ cosφ θ̇ 0

0 −2π sinφ cosφ θ̇

)
.

Here we used that An1 , An2 are symmetric and that trAn1 = trAn2 = 0 because the surface Õp/q is minimal.
Hence, the matrix of the operator A is

A =


0 2π sinφ cosφ θ̇

−2π cosφ θ̇ 0

−2π cosφ θ̇ 0

0 −2π sinφ cosφ θ̇

 ,

6



and since Ã = A∗A, the result follows.

Proposition 3.1.3. The operator ∆NÕp/q : Γ(NÕp/q) → Γ(NÕp/q) in the basis n1, n2 has the form

∆NÕp/q

(
f1
f2

)
=

(
∆f1 + 4π2φ̇2f1 − 4πφ̇

cosφ
∂f2
∂α

∆f2 + 4π2φ̇2f2 +
4πφ̇
cosφ

∂f1
∂α

)
.

Proof. It easily follows from (1) that for any n ∈ Γ(NÕp/q) and f ∈ C∞(Õp/q) we have

∆NÕp/q (fn) = f∆NÕp/qn+ (∆f)n− 2

2∑
i=1

(eif)∇
NÕp/q
ei n. (8)

Therefore it su�ces to calculate ∆NÕp/qni and ∇NÕp/q
ej ni for i, j = 1, 2. We have

∇R5

e1 n1 =
1

cosφ
∇R5

∂
∂α
n1 =


cosα cos θ
sinα cos θ
− cosα sin θ
− sinα sin θ

0

 , ∇R5

e2 n1 = 2π cosφ∇R5

∂
∂t
n1 =


− sinα sin θ θ̇

cosα sin θ θ̇

− sinα cos θ θ̇

cosα cos θ θ̇
0

 .

From this it is easy to see that

⟨∇R5

e1 n2, n1⟩ = −⟨∇R5

e1 n1, n2⟩ = 2πφ̇ and ⟨∇R5

ei nj , nk⟩ = 0 for all other i, j, k = 1, 2.

Hence,

∇NÕp/q
e1 n1 = ⟨∇R5

e1 n1, n2⟩n2 = −2πφ̇ n2, ∇NÕp/q
e1 n2 = ⟨∇R5

e1 n2, n1⟩n1 = 2πφ̇ n1,

∇NÕp/q
e2 n1 = ∇NÕp/q

e2 n2 = 0.
(9)

Further, from (7) we have

∇TÕp/q
e1 e1 = ⟨∇R5

e1 e1, e2⟩e2 = 2π sinφ φ̇ e2, ∇TÕp/q
e2 e2 = −⟨∇R5

e2 e1, e2⟩e1 = 0, (10)

and using (1), we get

∆NÕp/qn1 = −∇NÕp/q
e1 ∇NÕp/q

e1 n1 = 4π2φ̇2n1, ∆NÕp/qn2 = −∇NÕp/q
e1 ∇NÕp/q

e1 n2 = 4π2φ̇2n2, (11)

where all other summands from (1) vanish because of (9) and (10). The proposition now follows from (8), (9), (11).

Proposition 3.1.4 ([Kar14, Proposition 6]). The Laplace-Beltrami operator on Õp/q is given by the formula

∆f = − 1

cos2 φ

∂2f

∂α2
− ∂

∂t

(
4π2 cos2 φ

∂f

∂t

)
.

Proposition 3.1.5 ([Sim68, equation (5.1.1)]). The operator R : Γ(NÕp/q) → Γ(NÕp/q) is the multiplication
by −2.

Proposition 3.1.6. The Jacobi stability operator J : Γ(NÕp/q) → Γ(NÕp/q) in the basis n1, n2 has the form

J

(
f1
f2

)
=

(
∆f1 + 4π2φ̇2f1 − 4πφ̇

cosφ
∂f2
∂α − 2f1 − 8π2 cos2 φ θ̇2f1

∆f2 + 4π2φ̇2f2 +
4πφ̇
cosφ

∂f1
∂α − 2f2 − 8π2 cos2 φ sin2 φ θ̇2f1

)
.

Proof. This follows from Propositions 3.1.2�3.1.5.

7



3.2 Some elements from the kernel of J

It turns out that some elements of the kernel of J can be found from geometrical considerations. We use the
following fact.

Proposition 3.2.1 ([Sim68, Lemmas 5.1.7�5.1.9]). The image of any Killing vector �eld on S4 under the
orthogonal projection on NÕp/q lies in the kernel of J .

It is well-known that the space of Killing vector �elds on S4 has dimension 10 and is spanned by the �elds

xj
∂

∂xi
− xi

∂

∂xj
, 1 ⩽ i, j ⩽ 5.

The following proposition can be proved by a direct computation.

Proposition 3.2.2. The image of the space of Killing vector �elds on S4 under the orthogonal projection on
NÕp/q is spanned by the following vector-functions(

cosφ sin 2θ
0

)
,

(
cosφ cos 2θ

0

)
,

(
0

2π cos2 φ φ̇

)
,

(
− sinα sinφ cos θ

2π cosα cosφ(sinφ cos θ φ̇+ sin θ cosφ θ̇)

)
,(

cosα sinφ cos θ

2π sinα cosφ(sinφ cos θ φ̇+ sin θ cosφ θ̇)

)
,

(
− sinα sinφ sin θ

2π cosα cosφ(sinφ sin θ φ̇− cos θ cosφ θ̇)

)
,(

cosα sinφ sin θ

2π sinα cosφ(sinφ sin θ φ̇− cos θ cosφ θ̇)

)
,

(
− sin 2α cosφ

2π cos 2α cos2 φ φ̇

)
,

(
cos 2α cosφ

2π sin 2α cos2 φ φ̇

)
.

3.3 Separation of variables

Proposition 3.3.1. Let h(l, t) =
(

h1(l,t)
h2(l,t)

)
be a solution of the following periodic matrix Sturm-Liouville problem


−(4π2 cos2 φh′1)

′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 cos2 φ θ̇2

)
h1 −

4πlφ̇

cosφ
h2 = λh1,

−(4π2 cos2 φh′2)
′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2

)
h2 −

4πlφ̇

cosφ
h1 = λh2,

(12)

h(l, t) ≡ h(l, t+ t0). (13)

Then the vector-functions(
h1(l, t) cos lα
h2(l, t) sin lα

)
and

(
−h1(l, t) sin lα
h2(l, t) cos lα

)
, l = 0, 1, 2, . . .

form a basis in the space of eigenfunctions of the operator J with eigenvalue λ. If q is even, then one can chose
this basis in such a way that each basis eigenfunction is either t0

2 -periodic or t0
2 -antiperiodic.

Proof. It su�ces to note that the operator J commutes with ∂
∂α and that for even q the coe�cients of the

system (12) are t0
2 -periodic.

Denote by λk(l) the k-th (k ⩾ 1) eigenvalue of the problem (12,13). For even q denote by λ+k (l) (respectively,
by λ−k (l)) the k-th (k ⩾ 1) eigenvalue of the problem (12,13) for which the corresponding eigenfunction is t0

2 -
periodic (respectively, t0

2 -antiperiodic). Also let us �x the following notation

p(t) = 4π2 cos2 φ(t),

Ql(t) =

(
l2

cos2 φ + 4π2φ̇2 − 2− 8π2 cos2 φ θ̇2 − 4πlφ̇
cosφ

− 4πlφ̇
cosφ

l2

cos2 φ + 4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2

)
.

Proposition 3.3.2. For l ⩾ 3 the inequality λ1(l) > 0 holds.
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Proof. Fix arbitrary l ⩾ 3. Since

λ1(l) = inf
h∈C∞(R)\{0}
h(t)≡h(t+t0)

∫ t0
0
(p(t)|h′(t)|2 + ⟨h(t), Ql(t)h(t)⟩) dt∫ t0

0
|h(t)|2 dt

⩾ inf
h∈C∞(R)\{0}
h(t)≡h(t+t0)

∫ t0
0
⟨h(t), Ql(t)h(t)⟩ dt∫ t0

0
|h(t)|2 dt

,

it su�ces to show that the matrix Ql(t) is positive de�nite for each t. This last assertion holds as soon as the
inequality

l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 cos2 φ θ̇2 >

∣∣∣∣ 4πlφ̇cosφ

∣∣∣∣
holds for each t. Using (4) and (5), one can rewrite this inequality in the form(

l −

√
1− cos4 b

cos4 φ

)2

> 2

(
cos2 φ+

cos4 b

cos4 φ

)
.

This last inequality holds for l ⩾ 3 because in this case we have LHS ⩾ 4 > RHS.

Thus, the problem (12,13) admits nonpositive eigenvalues only for l = 0, 1, 2. In the following sections the
cases l = 0 and l = 1, 2 are considered separately.

3.4 Case l = 0

This case is the simplest one because in this case the problem (12,13) is decoupled. We arrive at two scalar
periodic Sturm-Liouville problems

−(4π2 cos2 φh′1)
′ + (4π2φ̇2 − 2− 8π2 cos2 φ θ̇2)h1 = λh1, (14)

h1(t+ t0) ≡ h1(t), (15)

and

−(4π2 cos2 φh′2)
′ + (4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2)h2 = λh2, (16)

h2(t+ t0) ≡ h2(t). (17)

Our aim is the following

Proposition 3.4.1. The following inequalities hold

#{k | λk(0) < 0} = 2q + 4p− 1, #{k | λk(0) = 0} = 3.

If, in addition, q is even, then

#{k | λ+k (0) < 0} = q + 2p− 1, #{k | λ+k (0) = 0} = 3.

Denote the k-th (k ⩾ 0) eigenvalues of the problems (14,15) and (16,17) by λ
(1)
k and λ

(2)
k respectively.

Proposition 3.4.2. λ
(1)
4p−1 = λ

(1)
4p = 0.

Proof. It follows from Proposition 3.2.2 that the functions cosφ cos 2θ and cosφ sin 2θ are the eigenfunctions of
the problem (14,15) with eigenvalue 0. These functions are linearly independent and each have exactly 4p zeros
on [0, t0) (see Proposition 2.2.3), hence the proposition follows from Theorem 2.

Now consider the problem (16,17). Unfortunately, for this problem Proposition 3.2.2 gives only one eigen-
function 2π cos2 φ φ̇ and we cannot determine the number of the eigenvalue 0 using only Theorem 2. However,
this eigenfunction is T -antiperiodic and the coe�cients of the equation (16) are periodic with the same period.
Therefore it is natural to consider the following antiperiodic Sturm-Liouville problem

−(4π2 cos2 φh′2)
′ + (4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2)h2 = λh2, (18)

h2(t+ T ) ≡ −h2(t). (19)

Denote the k-th (k ⩾ 1) eigenvalue of the problem (18,19) by λ̃
(2)
k .
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Proposition 3.4.3. λ̃
(2)
1 < 0, λ̃

(2)
2 = 0.

Proof. It follows from Proposition 3.2.2 that the function 2π cos2 φ φ̇ is the eigenfunction of the problem (18,19)
with eigenvalue 0. Since on the segment [0, T ] this function vanishes only at the points t = 0, T , it follows from

Theorem 2 that either λ̃
(2)
1 = 0 or λ̃

(2)
2 = 0.

Let us show that in fact λ̃
(2)
2 = 0. One can verify by a direct computation that the substitution z(t) =√

p(t)h2(t) = 2π cosφ(t)h2(t) transforms the problem (16,17) into the problem

−z′′ + λ+ 2

p(t)
z = 0, (20)

z(t+ T ) ≡ −z(t). (21)

We need the following claim, which one can consider as the integral version of the permutation inequality.

Claim 2. Let f(t) and g(t) be two (non-strictly) monotonic functions on [0, a] with di�erent kinds of mono-
tonicity. Then ∫ a

0

f(t)g(t) dt ⩽
∫ a

0

f(t)g(a− t) dt,

where the equality is attained exactly when at least one of the functions f, g is a constant function.

Proof.∫ a

0

f(t)(g(t)− g(a− t)) dt =

∫ a
2

0

f(t)(g(t)− g(a− t)) dt+

∫ a

a
2

f(t)(g(t)− g(a− t)) dt =

∫ a
2

0

f(t)(g(t)− g(a− t)) dt−
∫ T

2

0

f(a− t)(g(a− t)− g(t)) dt =

∫ a
2

0

(f(t)− f(a− t))(g(t)− g(a− t)) dt ⩽ 0,

where the last inequality follows from the monotonicity of f and g. The equality happens exactly when the
integrand is identically zero. In such a case we have f(0) = f(a) or g(0) = g(a) and from the monotonicity we
have f = const or g = const.

Let us continue the proof of Proposition 3.4.3. The function ζ(t) = 2π cos3 φ(t) φ̇(t) solves the prob-
lem (20,21) with λ = 0. Note that the functions p(t) and ζ(t) are strictly increasing on [0, T2 ]. Using ζ(

T
2 − t)

as a test function, we �nd

λ̃
(2)
1 + 2 ⩽

∫ T

0
ζ ′(T2 − t)2 dt∫ T

0
p(t)−1ζ(T2 − t)2 dt

=

∫ T
2

0
ζ ′(t)2 dt∫ T

2

0
p(t)−1ζ(T2 − t)2 dt

<

∫ T
2

0
ζ ′(t)2 dt∫ T

2

0
p(t)−1ζ(t)2 dt

=

∫ T

0
ζ ′(t)2 dt∫ T

0
p(t)−1ζ(t)2 dt

= 2.

Here we used Claim 2 and the fact that ζ is even w.r.t. the transformation t 7→ T − t.

Proposition 3.4.4. λ
(2)
2q−1 = λ̃

(2)
1 < 0, λ

(2)
2q = λ̃

(2)
2 = 0.

Proof. This follows from Proposition 3.4.3 and assertion 1) of Proposition 1 for n = q.

Proof of Proposition 3.4.1. This follows from Propositions 3.4.2, 3.4.4 and Claim 1 for n = 2.

Remark 2. The trick, used in the proof of Proposition 3.4.3, can be used to simplify the proof of [Kar14, �3.4].

3.5 Preparation for the cases l = 1 and l = 2

In this section we describe our approach for more complicated cases l = 1 and l = 2, in which the system (12)
is not decoupled.

Consider the following matrix Sturm-Liouville problem
−(4π2 cos2 φh′1)

′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 cos2 φ θ̇2

)
h1 −

4πlφ̇

cosφ
h2 = λh1,

−(4π2 cos2 φh′2)
′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2

)
h2 −

4πlφ̇

cosφ
h1 = λh2,

(22)

h1(t+ T ) ≡ ωh1(t), h2(t+ T ) ≡ −ωh2(t), (23)
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where ω is some 2q-th root of unity and h(t) is a complex-valued vector-function. Denote the k-th (k ⩾ 1)

eigenvalue of the problem (22,23) by λ
[ω]
k (l).

Proposition 3.5.1. Denote ε = e
1
qπi. Then

{λk(l) | k ⩾ 1} =

2q−1⋃
r=0

{λ[ε
r]

k (l) | k ⩾ 1},

and if q is even, then

{λ+k (l) | k ⩾ 1} =

q−1⋃
r=0

{λ[ε
2r]

k (l) | k ⩾ 1}, {λ−k (l) | k ⩾ 1} =

q−1⋃
r=0

{λ[ε
2r+1]

k (l) | k ⩾ 1}.

Here we mean the equalities of multisets, i.e. each eigenvalue is counted with multiplicity.

Proof. This is standard. It su�ces to note that the cyclic group of order 2q acts on the solution space of the
problem (12,13) by the rule

σ ∗
(
h1(t)
h2(t)

)
= ε

(
h1(t)
−h2(t)

)
, (24)

where σ is a generator of the cyclic group. Thus the �rst assertion of the proposition follows easily from the
existence of a joint basis of eigenfunctions. For the second assertion just note that an eigenfunction of (22,23)
is t0

2 -antiperiodic exactly when ωq = 1.

Proposition 3.5.1 allows us to reduce the counting of negative eigenvalues of the problem (12,13) to the
counting of negative eigenvalues of the problems (22,23) where ω runs through all 2q-th roots of unity. For the
problems (22,23) we use an approach based on the work of Edwards [Edw64].

Denote by µk(l) the k-th eigenvalue of the Dirichlet problem
−(4π2 cos2 φh′1)

′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 cos2 φ θ̇2

)
h1 −

4πlφ̇

cosφ
h2 = µh1,

−(4π2 cos2 φh′2)
′ +

(
l2

cos2 φ
+ 4π2φ̇2 − 2− 8π2 sin2 φ cos2 φ θ̇2

)
h2 −

4πlφ̇

cosφ
h1 = µh2,

h(0) = h(T ) = 0.

Also denote

Ωl[g, h] =

∫ T

0

(p(t)⟨g′(t), h′(t)⟩+ ⟨g(t), Ql(t)h(t)⟩)dt =

⟨g(t), p(t)h′(t)⟩
∣∣∣T
0
+

∫ T

0

⟨g(t),−(p(t)h′(t))′ +Ql(t)h(t)⟩dt,

where ⟨·, ·⟩ stands for the standard Hermitian product in C2.
Let Sl be the solution space of the system (22) on the segment [0, T ]. Consider the map

Sl → C2 ⊕ C2, h(t) 7→ (h(0), h(T )). (25)

Suppose that µk(l) ̸= 0 for each k ⩾ 1 (we will see that this is the case at least for b close to zero). Then the
kernel of the map (25) is trivial and since dimSl = 4, we see that this map is a bijection. De�ne the Hermitian
form αl[·] on C2 ⊕ C2 by the formula

α[(v0, vT )] = Ωl[h, h],

where h is a unique element of Sl such that h(0) = v0, h(T ) = vT . We denote the corresponding sesquilinear
form by αl[·, ·]. Finally, let us �x the following basis of C2 ⊕ C2

e1 =

((
1
0

)
,

(
0
0

))
, e2 =

((
0
1

)
,

(
0
0

))
, e3 =

((
0
0

)
,

(
1
0

))
, e4 =

((
0
0

)
,

(
0
1

))
.
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Proposition 3.5.2 (see [Edw64, Proposition 2.6]). Suppose that µk(l) ̸= 0 for each k ⩾ 1. Then

#{k | λ[ω]
k (l) < 0} = #{k | µk(l) < 0}+ ind(αl|Πω),

#{k | λ[ω]
k (l) = 0} = null(αl|Πω),

where Πω = span{e1 + ωe3, e2 − ωe4}, vertical bar denotes restriction, and ind,null denote the index and the
nullity of a Hermitian form on a subspace respectively.

Denote aij = αl[ei, ej ]. Since the coe�cients of the system (22) are real-valued functions, we have aij ∈ R,
in particular, aij = aji. Moreover, since the coe�cients of the system (22) are even functions w.r.t. the
transformation t 7→ T − t, we obtain

aij = aσ(i)σ(j), where σ =

(
1 2 3 4
3 4 1 2

)
.

Therefore the Gram matrix of the restriction αl|Πω has the form

Al(ω) =

(
a11 + (ω + ω̄)a13 + a33 a12 + ωa23 − ω̄a14 − a34
a12 + ω̄a23 − ωa14 − a34 a22 − (ω + ω̄)a24 + a44

)
=

=

(
2a11 + (ω + ω̄)a13 (ω − ω̄)a14

(ω̄ − ω)a14 2a22 − (ω + ω̄)a24

)
. (26)

In particular, detAl(ω) is a polynomial in s = Reω of degree at most 2. We denote this polynomial by Pl(s).
Now consider the case of Cli�ord torus b = 0. In this case we have

φ(t) ≡ 0, θ(t) =
t

2π
, T = lim

b→0
T (b) =

√
2π2.

The problem (22,23) becomes {
−4π2h′′1 + (l2 − 4)h1 = λh1,

−4π2h′′2 + (l2 − 2)h2 = λh2,
(27)

h1(t+ T ) ≡ ωh1(t), h2(t+ T ) ≡ −ωh2(t). (28)

Since the problem (27,28) is decoupled, it is easy to see that

µ1(1) = −1, µ2(1) = 1 > 0, µ1(2) = 2 > 0. (29)

In particular, µk(l) ̸= 0 for each k ⩾ 0. Therefore the matrices Al(ω), l = 1, 2 are de�ned and can be computed.

Proposition 3.5.3. For b = 0 we have

A1(ω) =

 4
√
3π

sin
√

6
2 π

(cos
√
6
2 π − Reω) 0

0 4π

sin
√

2
2 π

(cos
√
2
2 π +Reω)

 ,

A2(ω) =

(
4
√
2(1− Reω) 0

0 4
√
2π

sinhπ (coshπ +Reω)

)
.

Proof. We consider only the case l = 1 because the case l = 2 is similar. Let ψi(t) be the solution of the
system (27) satisfying (ψi(0), ψi(T )) = ei (i = 1, 2, 3, 4). On can verify by a direct computation that

ψ1 =
1

sin
√
6
2 π

(
sin

√
3(T−t)
2π

0

)
, ψ2 =

1

sin
√
2
2 π

(
0

sin T−t
2π

)
,

ψ3 =
1

sin
√
6
2 π

(
sin

√
3t

2π
0

)
, ψ4 =

1

sin
√
2
2 π

(
0

sin t
2π

)
.

Since

aij = α1[ei, ej ] = Ω1[ψi, ψj ] = ⟨ψi, pψ
′
j⟩
∣∣∣T
0
,

we see that all the values aij can be easily computed.
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Hence for b = 0 we have

ind(α1|Πω) =


2, Reω ∈ [−1, cos

√
6
2 π),

1, Reω ∈ [cos
√
6
2 π,− cos

√
2
2 π),

0, Reω ∈ [− cos
√
2
2 π, 1],

null(α1|Πω) =

{
1, Reω = cos

√
6
2 π,− cos

√
2
2 π,

0, otherwise.

ind(α2|Πω) = 0, null(α2|Πω) =

{
1, ω = 1,

0, otherwise.

We need the following technical proposition.

Proposition 3.5.4. The values aij and µk(l) depend continuously on b.

Proof. The substitution t 7→ t
T allows us to consider the system (22) as a system on the segment [−1, 1]

independent of b. Then the continuity of aij as a function of b follows easily from the continuous dependence of
the solution of a system of ODEs on the coe�cients. The continuity of the Dirichlet eigenvalues µk(l) follows,
for instance, from [HLWZ19, Theorem 6].

3.6 Estimates for the cases l = 1 and l = 2

Proposition 3.6.1. For each b su�ciently close to zero we have

2q + 2p− 1 ⩽#{k | λk(1) < 0} ⩽ 4q − 2,

2 ⩽#{k | λk(1) = 0} ⩽ 4.
(30)

If, in addition, q is even, then
q + p− 1 ⩽#{k | λ−k (1) < 0} ⩽ 2q − 2,

2 ⩽#{k | λ−k (1) = 0} ⩽ 4.
(31)

Proof. First note that it follows from (29) and Proposition 3.5.4 that for b su�ciently close to zero we have

#{k | µk(1) < 0} = 1. (32)

When b = 0 the roots of the polynomial P1(s) are cos
√
6
2 π and − cos

√
2
2 π. It follows from Proposition 3.5.4 that

for b su�ciently close to zero the roots s1 and s2 of the polynomial P1(s) are close to cos
√
6
2 π and − cos

√
2
2 π

respectively and we have

ind(α1|Πω) =


2, Reω ∈ [−1, s1),

1, Reω ∈ [s1, s2),

0, Reω ∈ [s2, 1],

null(α1|Πω) =

{
1, Reω = s1, s2,

0, otherwise.
(33)

At the same time, it follows from Proposition 3.2.2 that the vector-function

eiθ
(

sinφ

2π cosφ(sinφ φ̇− i cosφ θ̇)

)
=

(
sinφ cos θ

2π cosφ(sinφ cos θ φ̇+ sin θ cosφ θ̇)

)
+

+ i

(
sinφ sin θ

2π cosφ(sinφ sin θ φ̇− cos θ cosφ θ̇)

)
solves the problem (22,23) with l = 1, λ = 0, ω = −e

p
q πi. Therefore it follows from Proposition 3.5.2 that

detA1(−e
p
q πi) = 0, i.e.

s2 = − cos
p

q
π. (34)

Note that for b su�ciently close to zero we have |s1| > s2. Thus from (33), (34) we have

2p− 1 ⩽
2q∑
r=0

ind(α1|Πεr ) ⩽ 2q − 2, 2 ⩽
2q∑
r=0

null(α1|Πεr ) ⩽ 4, (35)
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and for even q we have

p− 1 ⩽
q−1∑
r=0

ind(α1|Πε2r+1) ⩽ q − 2, 2 ⩽
q−1∑
r=0

null(α1|Πε2r+1) ⩽ 4. (36)

The required inequalities (30) and (31) follow now from (32), (35), (36) and Propositions 3.5.1, 3.5.2.

Proposition 3.6.2. For any b su�ciently close to zero we have

λ1(2) = 0, λ2(2) > 0.

If, in addition, q is even, then
λ+1 (2) = 0, λ+2 (2) > 0.

Proof. This is similar to the proof of Proposition 3.6.1 but easier. Again we note that it follows from (29) and
Proposition 3.5.4 that for b su�ciently close to zero we have

#{k | µk(2) < 0} = 0. (37)

For b = 0 the roots of the polynomial P2(s) are 1 and− coshπ. At the same time, it follows from Proposition 3.2.2
that the vector-function

( cosφ

2π cos2 φ φ̇

)
solves the problem (22,23) with l = 2, λ = 0, ω = 1. Therefore for each

b the polynomial P2(s) has the root 1 and for b su�ciently close to zero the second root of P2(s) is close to
− coshπ < −1. Thus for b su�ciently close to zero we have

ind(α2|Πω) = 0, null(α2|Πω) =

{
1, ω = 1,

0, otherwise.
(38)

The proposition now follows from (37), (38) and Propositions 3.5.1, 3.5.2.

3.7 Estimates on index and nullity

Proof of Theorem 1. Let us put together the results of �3.4 and �3.6. Suppose that q is odd. According to
Proposition 3.3.1 each eigenfunction of the problem (12,13) with l = 0 and λ < 0 (λ = 0) contributes 1 to
ind Õp/q (null Õp/q), and each eigenfunction of the problem (12,13) with l = 1, 2 and λ < 0 (λ = 0) contributes

2 to ind Õp/q (null Õp/q). Hence,

ind Õp/q = #{k | λk(0) < 0}+ 2#{k | λk(1) < 0}+ 2#{k | λk(2) < 0},
null Õp/q = #{k | λk(0) = 0}+ 2#{k | λk(1) = 0}+ 2#{k | λk(2) = 0},

and from Propositions 3.4.1, 3.6.1, 3.6.2 we have

6q + 8p− 3 = (2q + 4p− 1) + 2(2q + 2p− 1) ⩽ ind Õp/q ⩽ (2q + 4p− 1) + 2(4q − 2) = 10q + 4p− 5,

9 = 3 + 2 · 2 + 2 · 1 ⩽null Õp/q ⩽ 3 + 2 · 4 + 2 · 1 = 13.

Suppose that q is even. Then the immersion (2) is invariant under the transformation

(α, t) 7→
(
α+ π, t+

t0
2

)
.

It follows that for even (respectively, odd) l only t0
2 -periodic (respectively,

t0
2 -antiperiodic) eigenfunctions of the

problem (12,13) contribute to index and nullity. Hence,

ind Õp/q = #{k | λ+k (0) < 0}+ 2#{k | λ−k (1) < 0}+ 2#{k | λ+k (2) < 0},
null Õp/q = #{k | λ+k (0) = 0}+ 2#{k | λ−k (1) = 0}+ 2#{k | λ+k (2) = 0},

and from Propositions 3.4.1, 3.6.1, 3.6.2 we have

3q + 4p− 3 = (q + 2p− 1) + 2(q + p− 1) ⩽ ind Õp/q ⩽ (q + 2p− 1) + 2(2q − 2) = 5q + 2p− 5,

9 = 3 + 2 · 2 + 2 · 1 ⩽null Õp/q ⩽ 3 + 2 · 4 + 2 · 1 = 13.
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Remark 3. 1) Unfortunately, our method does not allow us to obtain explicit estimates on δ.
2) We suppose that �nding the exact value of ind Õp/q for each

p
q is a very di�cult problem. Indeed, such a

computation at least should contain a very accurate control over the root s1 from the proof of Proposition 3.6.1,
while this root hardly can be calculated exactly.

3) A numerical experiment in Wolfram Mathematica allows us to conjecture that

ind Õ2/3 = 31, null Õ2/3 = 9,

which coincides with the lower bounds from Theorem 1. However it is easy to see from the proof of Theorem 1
that for some of the surfaces Õp/q this is not the case. Indeed, analyzing the proof of Proposition 3.6.1, one can

see that the lower bound on ind Õp/q can be attained only if s1 < −1 while for b su�ciently close to zero the
inequality s1 > −1 holds.
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